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Series Foreword

Remote sensing refers to the technology of acquiring information about the Earth’s
surface (land and ocean) and atmosphere using sensors onboard airborne (aircraft,
balloons) or spaceborne (satellites, space shuttles) platforms. Since the end of World
War II, the technology of remote sensing has gradually evolved into a scientific
subject. Its early development was driven mainly by military uses. Later, remotely
sensed data became widely applied to civilian usages. Remote sensing applications
cover a range of topics including archaeology, agriculture, cartography, civil engi-
neering, meteorology, climatology, coastal studies, emergency response, forestry,
geology, geographic information systems, natural and man-made hazards, land use,
land cover, natural disasters, oceanography, and water resources. Recently, with the
advent of high spatial-resolution imagery and more capable techniques, commercial
applications of remote sensing are rapidly gaining interest in the remote sensing
community and beyond.

The Taylor & Francis Series in Remote Sensing Applications is dedicated to recent
developments in the theories, methods, and applications of remote sensing. Written
by a team of leading authorities, each book is designed to provide up-to-date develop-
ments in a chosen sub-field of remote sensing applications. Each book may vary in
format, but often contains similar components, such as a review of theories and meth-
ods, analysis of case studies, and examination of the methods for applying remote
sensing techniques to a specific practical area. This book series may serve as guide
or reference books for professionals, researchers, scientists, and alike in academics,
governments, and industries. College instructors and students may also find them to
be excellent sources for textbooks or a supplement to their chosen textbooks.

This book, Global Mapping for Human Settlement: Experiences, Datasets,
and Prospects, focuses on urban remote sensing at the global scale, and intends to
provide an overview of datasets, approaches, and important lessons in the use of
remotely sensed data to map human settlements regarding land cover, land use, and
human population. Mapping human settlements is a topic of worldwide interest due
to its importance in various aspects of urban planning, environmental management,
quality of life, and decision making. The focus on global cities reflects awareness
of the increasing percentage of the world population that lives in urban areas, and
growing concerns over the Earth’s environment. The evolving sensor technology
and digital image processing algorithms continue to drive users’ interest in better
quality and globally consistent land use and land cover data from remote sensing
imagery. Because previous efforts in mapping human settlements were concerned
largely with the regional and local scales, this book fills a unique niche in the field
of urban remote sensing.

Professors Gamba and Herold have extensive experience in conducting research,
and publishing results in top remote sensing journals. By coordinating the efforts of
a group of leading figures in urban remote sensing, this edited volume is expected to
have a great impact on global land mapping for many years to come.
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X Series Foreword

I'hope that the publication of this book will promote a better use of remote sensing
data, science, and technology, and will facilitate the monitoring and assessing of the
global environment and sustaining our common home — the Earth.

Qihao Weng, Ph.D.

NASA
Huntsville, Alabama

© 2009 by Taylor & Francis Group, LLC



Preface

According to United Nations predictions, by the year 2030 60% of the world’s popu-
lation will live in cities. Although urban areas occupy only approximately 3% of
the Earth’s surface, their impact on surrounding rural areas is rapidly increasing,
and they drive and change natural and human systems at all geographic scales. Any
operational efforts tailored at sustainable and desirable future development have to
consider urban dynamics as one of the key human-induced processes for understand-
ing and managing our fast-changing world. Earth observation has been focused on
mapping, monitoring, and understanding these urban phenomena for many years,
but with more emphasis on local to regional scales. Global mapping of human settle-
ments is particularly challenging because of the spatial and spectral heterogeneity of
urban environments, as well as their small and fragmented spatial configuration.

The aim of this book is to provide a comprehensive overview of experiences, meth-
odologies, datasets, and approaches related to the use of remotely sensed data to map
human settlements. The focus is on global- and coarse-scale analyses, and as such on
global and regional datasets, with applications to land cover/land use and population
mapping. The unprecedented capability of remote sensing technologies to provide
global coverage for observing human settlements with sufficient spectral, spatial, and
temporal resolution has resulted in several attempts to extract global mapping prod-
ucts or refine existing ones. A complete and exhaustive list of such projects and their
approaches does not exist yet. This book aims to fill this gap by further considering
the improving global observing capacities, the growing demand for consistent and
continuous global data advocated by political initiatives such as the Group on Earth
Observation (GEO) and Global Monitoring for Environment and Security (GMES),
and evolving operational land monitoring programs. This book will provide students,
researchers, and practitioners a milestone reference point that summarizes the state
of the art and discusses future needs that are still to be fulfilled.

The target audience for this book is diverse. The book should be useful in several
different ways for graduate-level education and capacity building:

1. As part of curricula dealing with remote sensing, geographic information
system (GIS) and spatial analysis, and global monitoring and assessments.
Several chapters provide the technical basics and approaches to coarse-
scale urban remote sensing and monitoring.

2. As a part of urban geography, ecology, and planning curricula, because
it shows how remote sensing could be used to improve the knowledge for
urban planning and management beyond the local scale, or to compare
human settlements through consistent global observation perspective.

3. In the evolving fields of global environmental change and sustainability
studies.

4. For international capacity building and to support related applications
intending to make use of techniques and datasets described and applied.

xi
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xii Preface

The book includes perspectives from users and producers of global data. It offers
a valuable source of information for global international organizations, researchers,
and practitioners. Furthermore, it is very important for those who want to exploit
existing datasets and use them as part of their research or work, because it explains
the methodology behind the datasets, allowing the reader to understand the poten-
tials and perhaps limitations of each dataset, to compare them, and to use one that
best serves their purpose.

In addition to the text, a DVD with key global datasets described and referred to
in several chapters of the book is provided. Although most of these data are freely
available on the Web, they are presented here in a common format and are intended
to help the interested readers take a closer look or use them for educational or capac-
ity-building purposes.

Thus, potential readers will benefit from several factors: the written background
documentation in this book, appropriate references to existing datasets summa-
rized in one source, the available datasets provided in the accompanying DVD, the
methodologies behind these datasets introduced and discussed in separate chapters,
potential applications of these datasets analyzed by leading experts in the field, and
the directions for research highlighted in the final section of the book.

The chapters are subdivided into four parts. Each one addresses some of the
above-mentioned needs of the audience. Part I is devoted to analyzing the require-
ments for global and regional urban remote sensing, and thus maintains a general
point of view on the topic. The two chapters by Karen Seto and Martin Herold pro-
vide a general background of global urban issues and outline some general observa-
tion and assessment requirements, and how they relate to current initiatives on the
international policy and strategic levels.

Part II describes the characteristics of human settlements as seen and mapped
from remote sensors, either at regional or global scale. The spectral variety, the spa-
tial scales, and the nighttime appearance as key remote sensing indicators of these
environments are discussed in the subsequent chapters by Martino Pesaresi, Daniele
Ehrlich and Chris Small. The contribution by Annemarie Schneider and her col-
leagues describes a comprehensive approach using Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor remote sensing data to derive consistent global
urban extent data.

Part III describes some of the most acclaimed and important projects and pro-
grams carried out in the past or present for urban mapping and monitoring. Examples
are presented at global and regional scales and involve examples from the developing
and developed world. The focus of the chapters in this part highlights the impressive
amount of information available and the processing and analysis techniques used to
extract such data from several data sources including satellite imagery. Experiences
and approaches from the Global Rural Urban Mapping Project, ongoing for many
years, are discussed in the chapter by Deborah Balk. The contribution by John Latham
et al. highlights results and examples from regional urban monitoring examples for
Africa as part of the efforts of the Global Land Cover Network (GLCN) and the Food
and Agricultural Organization (FAO). The Urban Environmental Modeling project
focuses on 100 cities worldwide, an effort that is further explained by Elizabeth
Wentz and her colleagues. The MEGACITIES project, presented in the chapter by
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Preface xiii

Hannes Taubenbdck et al., has a focus on risk management and how Earth observa-
tion data contribute to such efforts. Furthermore, there are a number of Earth obser-
vation initiatives on the European level with different projects of Monitoring Land
Use/Cover Dynamics, and GMES Urban Services, and recent efforts in the context
of GMES. The chapter by Frank Martin Seifert advocates their scope, achievements,
and future plans.

Part IV presents some of the future challenges and lines of research that should
be actively pursued in the near future. Issues relating to semantic characteriza-
tion of human settlement areas are discussed in the chapter by Louisa Jansen. A
closer look into a suite of existing global urban maps is taken by David Potere and
Annemarie Schneider. They analyze and compare them to improve our current level
of understanding on existing global map products. Two chapters deal with the poten-
tial arising from the evolving Earth observation technology. The chapter by Fabio
Dell’Acqua discusses the role of synthetic aperture radar sensors in this context.
From a broader perspective, the contribution by Manfred Ehlers advocates an inte-
grated perspective for global urban monitoring. The issue of multidate urban obser-
vations and approaches to study and analyze this new level of high-temporal data is
discussed in the chapter by Alexandre Boucher and Karen Seto.

Research on applications and use of remote sensors for human settlement map-
ping and monitoring is a rather recent effort compared to other global mapping
efforts. Research aimed at achieving useful results at a regional or global level
has only recently reached a suitable level of maturity. This book stems from the
results of the work of those who started these efforts in the past decade. It is
commonly understood that future efforts will be more driven by issues such as
“interoperability,” “operational and efficient global monitoring,” and “interna-
tional coordination and cooperation” for developing and exchanging datasets,
improving models, and links to decision making and urban planning and man-
agement. Thus, we would like the reader to understand this book as commu-
nity message advocating the comprehensive level of understanding on how to
approach global urban monitoring, how different efforts have led to a number of
suitable products, and the obvious path forward to make global urban monitoring
an operational component of such efforts as GEO and GMES, and to stimulate
further research.

Paolo Gamba and Martin Herold
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Global Urban Issues
A Primer

Karen C. Seto

As we enter the 21st century, the world is becoming increasingly urban, both in
terms of human population and the Earth’s surface. Although cities have existed for
centuries, the urbanization processes today are different from urban transitions of
the past in three significant ways (Cohen, 2004). First, the magnitude of urbaniza-
tion is extraordinary. The global proportion of urban population was a mere 13%
in 1900 (UN, 2006). It rose gradually to 29% in 1950. By 2030, the world’s urban
population is expected to nearly double from 2.86 billion in 2000 to almost 5 billion
(Figure 1.1). There are now 400 cities with populations of 1 million or greater, com-
pared with only 16 cities with populations of 1 million or greater at the turn of the
20th century. The scale of urban land area is also extraordinary. Neoliberal reforms,
demographic transitions, and economic development have created new cities and
megapolitan regions of extraordinary size. The two biggest metropolitan regions,
New York and Tokyo—Yokohama, together encompass an area of greater than 15,000
km?2, an area the size of one and one-half Jamaicas.

Second, the rapidity with which landscapes and populations are urbanizing is faster
than during other periods in history. China and India, the two most populous countries
in the world, regard urbanization as a critical component of their development process
and have ambitious goals to build a vast network of new cities to fuel their industrial-
ization goals (Song and Ding, 2007; Kennedy, 2007). In the next two decades, China
will create nearly 30 new cities of 1 million inhabitants; India is expected to add 26
cities of this size during the same period. In contrast, the United States has only nine
cities with populations of 1 million or greater. Together, China and India are projected
to have almost one-third of the world’s urban dwellers by 2030 (UN, 2006).

A third characteristic of the urban transition underway today is that it will take
place primarily in Africa and Asia (UN, 2006). Whereas the urbanization levels in
the Americas and Europe are already high, 80% in South America and 75-78% in
Europe and North America, the urban populations in the continents of Africa and
Asia are less than 40% of total population. Over the next two decades, the urban
populations of both continents are expected to increase to more than 50%. A major-
ity of these new urban residents will be poor, with estimates that between one-
quarter and one-third of all urban households in the world live in absolute poverty
(UNCHS, 2002).

Although there is uncertainty about urban population forecasts, especially for
countries where data are not readily available or nonexistent, given the scale of
the global urban transition of the 21st century, there is an urgent need for spatially
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FIGURE 1.1  Global population and composition, 1950-2030 (Source: UN, 2006).

explicit information on urban areas (Cohen, 2004; Montgomery, 2007). With esti-
mates that the global urban population will increase to 6 billion by 2030, the number
and size of urban areas will need to grow significantly to house the world’s growing
urban population. The growth of these urban areas will likely come at the expense
of agricultural land, pastures, forests, savannas, and countrysides. Thus, informa-
tion about where urban areas will likely expand or be developed will be critical for
forecasting impacts on natural resources (e.g., energy, water, building materials),
food security, biodiversity, and conservation of flora and fauna. Satellite remote sens-
ing can provide accurate and timely information on urban land use, its location and
spatial configuration, as well as growth rates and patterns. The internally consis-
tent measurements and long observational record of satellite sensor data make it an
attractive source of reliable information on urban extent and form.

Human settlements are dominantly coastal. Globally, approximately 400 million
people live within 20 m of sea level and within 20 km of a coast (Small and Nicholls,
2003). Many large cities occupy coastal locations that are often flood-prone and
vulnerable to extreme events. There is a growing need to understand the distribution
of vulnerability across landscapes, and to differentiate risk among different com-
munities within cities (Parnell et al., 2007). Hurricane Katrina and the 2004 Asian
tsunami showed that all cities — even those in wealthy countries — are vulner-
able to global environmental change and disasters. However, the coping capacity
and resilience differs significantly among communities. Hurricane Katrina revealed
that the poorest communities within New Orleans suffered disproportionately, and
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inadequate timely information about the spatial distribution of urban population and
urban infrastructure impeded emergency relief efforts.

Urban areas and socioeconomic processes within them will be increasingly
important in affecting and being affected by global environmental change. Locally,
the conversion of vegetated surfaces to urban areas modifies the exchange of heat,
water, trace gases, aerosols, and momentum between the land surface and overlying
atmosphere (Crutzen, 2004), leading to the “urban heat island effect,” often char-
acterized by elevated daytime and nighttime temperatures in and near urban areas
(Oke, 1974; Arnfield, 2003) and reduced rainfall in some regions (Kaufmann et al.,
2007). These changes imply that urban land use and urban land-use change can
affect local, regional, and global climate at diurnal, seasonal, and long-term scales.
The term “metro-agro-plex” has emerged to describe regions where there is a tight
coupling of the agricultural and urban-industrial activities within a geographic region
(Chameides et al., 1994). Metro-agro-plexes are a major force in the world economy
and also in global environmental change. Globally, they are also major sources of
atmospheric pollutants such as carbon dioxide, nitrogen oxides, and sulfur oxides.

The urban heat island effect is well established, but the relationship between urban
land-use change and its impact on local and regional precipitation and temperature is
less understood. The Intergovernmental Panel on Climate Change (Trenberth et al.
2007) notes a growing interest in understanding the contribution of urban land cover/
land use and pollution to climate change. Of particular importance, Chapter 3 (Section
3.3.2.4) reviews a growing body of research that links urban-related processes and
regional precipitation. Although urban land use modifies surface roughness, energy
flows, and water flow, global change studies have not considered fully the interac-
tions between urban areas and biophysical processes at regional or global scales. It is
assumed that the urban heat island effect is a local phenomenon with little effect on
global climate. As such, general circulation models (GCMs) have not included urban
processes, and most are so spatially coarse that they render geographic informa-
tion within urban areas useless (McGuffie and Henderson-Sellers, 2005). The spatial
resolution of most GCMs is between 250 and 600 km. For example, the HadCM3
developed at the Hadley Center in the United Kingdom has a horizontal resolution of
2.5° (atitude) by 3.75° (longitude), which is equivalent to 417 x 278 km at the equator
and 295 x 278 km at 45° latitude (Gordon et al., 2000). This coarse spatial resolution
means that the representation of land surfaces — such as urban extent and urban
form — are greatly simplified. There are many spatial downscaling techniques to
derive finer resolution climate information from these coarse GCMs (Hewitson and
Crane, 1996; Wilby and Wigley, 1997). With finer downscaling of these models, it
will soon be possible to incorporate detailed information on urban areas, including
texture, form, building material, and vertical structure. Only then will we understand
the extent to which aggregated expansive and rapid urban growth modifies regional
and global climate.

The connections and interactions between these urbanization processes and global
environmental change are increasingly intertwined and complex. Several new inter-
national initiatives and research networks have now been established to explore the
relationship between urbanization and global change. For example, the Resilience
Alliance’s (2007) Urban Program focuses on the major challenges facing urban
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systems and their landscapes. The Urban Climate Change Research Network (http://
www.uccrn.org) is a consortium of institutions and individuals that pursue the analy-
sis of climate change and energy issues from an urban perspective, with a primary
objective of creating open discourse and information exchange among research-
ers and decision makers on cutting-edge scientific, economic, and planning-related
research. Another such initiative is the International Human Dimensions Programme
on Global Environmental Change Urbanization and Global Environmental Change
Project (UGEC) seeks to develop a better understanding of the interactions and feed-
backs between global environmental change and urbanization at local, regional, and
global scales (Sanchez-Rodriguez, 2005).

One of the key research questions of the UGEC is, “How does urban land use
and urban land-use change affect global environmental change?”” Urban form is the
physical manifestation of the interactions among global, regional, and local forces in
a single geographic space. The size, scale, and form of cities and their likely future
growth trajectories will be critical to global environmental change. The environ-
mental challenges posed by the spatial configuration of urban land use have been
and will continue to be enormous: infrastructure requirements of extensive versus
compact cities, energy implications of commuting patterns, impact of urban expan-
sion on global food security. The conversion of natural and agricultural ecosystems
to urban uses has massive implications for Earth system functioning, and although
there are numerous regional and local case studies, the global rate and extent of
urbanization as a transformation of the landscape are poorly documented. There is
tremendous opportunity for the remote sensing community to contribute information
and insight into the urban land use, urban growth, and their interactions with eco-
system processes. For example, how does urban growth in coastal zones impact on
aquatic food chains and water quality? How does the aggregate impact of conversion
of land to urban uses affect regional and global hydrological cycles? Particularly in
semiarid areas, to what extent does groundwater extraction cause salinization and
consequent land-use/cover change that in turn contribute to global environmental
alterations through changes in surface albedo, or rainfall?

Another process for which the urban remote sensing community can offer better
understanding is peri-urbanization. Peri-urbanization is the process where rural areas
both close to but also distant from city centers become enveloped by, or transformed
into, extended metropolitan regions (Simon et al., 2004; Aguilar and Ward, 2003).
These changes are generally stimulated by exogenous investments in industry, real
estate speculation, or residential development. Almost always, they result in a tight
mosaic of traditional and agricultural areas juxtaposed with modern and industrial
land uses. As a physical phenomenon, peri-urbanization involves the conversion of
agricultural land, pastures, and forests to urban uses. As a social phenomenon, peri-
urbanization involves cultural and lifestyle adjustments of agrarian communities as
they become absorbed into the sphere of the urban economy. In most developing
countries, peri-urbanization is the most prominent form of urban growth and urban-
ization, with different characteristics across countries and regions. In some regions,
peri-urbanization is driven by foreign investments and increased commerce and
manufacturing, whereas in others, it is driven by interregional migration, infrastruc-
ture development, and domestic investments. Whatever the cause, different outcomes
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result on the landscape: thriving and economically robust satellite towns distant from
large cities or stagnant industrial outputs with the potential of deindustrialization.
Remote sensing studies can shed light on the peri-urbanization process and provide
critical information for policy-makers and planners.

The physical process of urban land-use change is most commonly described as
either a change in the absolute area of urban space (a measure of extent) or the
pace at which nonurban land is converted to urban uses (a measure of rate). The
extent and rate of urban growth provide indications of the aggregate size of cities
and the rate at which other land uses such as agriculture are converted to urban
uses. However, aggregate growth rates give limited information regarding spatial
patterns of urbanization or the underlying processes that shape human settlements.
The spatial configuration of urban landscapes is as much a reflection of past as it is
an indicator of current socioeconomic processes and interactions. For any period,
the spatial arrangement of urban areas provides a snapshot of various economic,
social, and political factors that influenced land use decisions. Our understanding of
how cities grow or expand is poor (Batty, 2008). And although there are a number
of remote sensing studies of urban morphology (Ridd, 1995; Herold et al., 2002,
2003; Benediktsson et al., 2003; Seto and Fragkias, 2005; Rashid et al., 2005), more
research is needed to understand how and why cities grow, and the role of urban form
on biophysical processes, infrastructure and transport needs, energy demands, and
environmental impacts.

Throughout history, infectious diseases have had a significant impact on human
populations. In the mid-1300s, the bubonic plague killed more than 100 million people,
wiping out one-third of Europe’s population and half of China’s population. This was
without air travel, modern-day dense settlements, and relatively smaller cities. More
recently, outbreaks of severe acute respiratory syndrome (SARS) and avian influenza
remind us of the speed and extent with which diseases and viruses can spread glob-
ally, especially in and across densely populated regions. Climate change is expected
to expand the potential transmission zone of malaria (van Lieshout et al., 2004).
Urbanization in the global south is expected to increase the risks of disease, including
dengue fever, plague, and yellow fever (Gubler, 1998). Conditions within cities such as
poor drainage, inadequate sanitation, overcrowding, and slum housing could further
exacerbate disease risk and increase transmission rates. Additionally, urban land-use
change will disturb ecosystems that in turn will lead to changes in disease vectors and
parasite populations. The confluence of these factors — growth in urban populations,
climate change, and urban land-use change — may foster conditions favorable for an
increased prevalence of some infectious diseases and a global health epidemic.

At local scales, a growing body of research suggests a relationship between urban
form and public health (Jackson, 2003; Frumkin, 2002; Frank, 2000). Low-density
urban development has led to more automobile travel, less physical activity, and less
use of public transportation (Frank and Pivo, 1995; Kenworthy and Laube, 1999).
More sedentary lifestyles including less walking and bicycling, combined with poor
diets, are contributing to higher obesity rates and higher risk for cardiovascular dis-
ease and stroke. Although low-density urban development does not directly lead to
higher mortality rates, urban sprawl is associated with decreased physical activity.
As obesity increasingly becomes a global public health issue, synoptic information
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on urban form and urban morphology can help target public health interventions, be
it planting trees, provision of sidewalks, or mixed-use zoning.

As cities continue to attract the bulk of the world’s population, there is a growing
need to understand urban land use processes. Cities are complex entities of intercon-
nected economic, social, and political systems. Remote sensing information on human
settlements can be the common linkage among research, policy, and practice that will
be integral to successfully solving pressing urban and global change issues.
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2.1 INTRODUCTION

The persisting dynamic urban change processes, especially the tremendous world-
wide expansion of urban population and urbanized area, affect and drive natural and
human systems at all geographic scales. Although urban areas occupy only about
3% of the Earth’s surface, their impact on surrounding rural areas is also rapidly
increasing. Urbanization not only concentrates people (and therefore the demand for
all social and economic services they require); it also creates hot spots for energy
consumption, natural resource consumption, and emissions of pollutants and green-
house gases, and acts as nodes linking communications and transport infrastruc-
ture — themselves all too often a source of pressure on the surrounding environment.

1
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Urbanization is the trigger for a variety of land change processes in natural and
seminatural environments. Any operational efforts tailored at sustainable and desir-
able future development have to consider urban dynamics as one of the key human-
induced processes for understanding and managing our fast-changing world.

Thus, there is no doubt that global urban monitoring is an essential requirement to
derive suitable information for understanding and management of urban processes to
address problems of worldwide urgency. In this chapter, I am going to review some
of the issues relating to a “global urban monitoring and assessment.” Such an effort
not only includes continuous, consistent, and accurate observations and monitoring,
but also a process that links with political and strategic initiatives to ensure its rel-
evance and legitimacy, and, ultimately, societal benefits. For the Earth observation
domain, several such initiatives are ongoing. I will discuss several lessons learned
from previous global environmental assessments and urban remote sensing exer-
cises, and introduce international Earth observation initiatives to suggest a number
of recommendations to the global observation community.

2.2 GLOBAL ENVIRONMENTAL ASSESSMENTS

Global environmental assessments have become an important element in interna-
tional, national, and local policy and decision making. They are a prominent means
for scientists providing input to address environmental problems on the policy level,
in addition to more traditional options such as peer-reviewed publications, popular
media, or private advice to relevant actors (Clark et al., 2006). The global nature of
such efforts emphasizes their role in addressing problems that require cooperation
among different countries, between scientists and policy makers, and across differ-
ent scales. There are numerous examples of such assessments (Mitchell et al., 2006)
including the Millennium Ecosystem Assessment (MEA), the Intergovernmental
Panel on Climate Change assessment reports, United Nations Environment
Programme’s (UNEP) Global Environmental Outlook, or the Forest Resources
Assessments conducted by the Food and Agriculture Organization (FAO). There
is no doubt that good scientific information is essential for environmental decision
making (Sutherland et al., 2006). However, mechanisms to link scientific research
to policy level discussions and decisions are not an easy matter. For example, there
is temporal dependence, and an evolution cycle between scientific findings, estab-
lishment of an observation and monitoring program, and related policy and public
awareness and actions, referred to as the “issue attention cycle” (Kingdon, 1995).
Furthermore, global assessments involve a social communication process in which
scientists, decision makers, advocates, and the media interact and interpret findings
in particular ways. Thus, it is to be recognized that the impact of a global assess-
ment not only depends on the science being robust and technically believable (cred-
ibility). Any users must view the assessment as “salient” and “legitimate” as well
as “credible” (Clark et al., 2006). When potential users believe that the information
generated by an assessment process is relevant to their decision making it can be
considered salient (Cash et al., 2002; Clark et al., 2006). Legitimacy is provided
if the process is perceived as fair and took account of the concerns and insights of
relevant stakeholders (Cash and Clark, 2001). In this context, five general issues
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have been advocated for practitioners to implement efficient global and regional
assessments (Clark et al., 2006):

* Focus on the process, not the report.

* Focus on salience and legitimacy as well as credibility.

* Assess with multiple audiences in mind.

* Involve stakeholders and connect with existing networks.
* Develop influence over time.

The suggested rules are similarly relevant for a case of global urban monitor-
ing and assessment efforts that, besides providing the data and observations, should
engage in international processes to make any findings and results more relevant and
accepted. This paper discusses some of these issues. The reader is also referred to
contributions from Moreno et al. (this volume) and Seto et al. (this volume).

2.3 URBAN REMOTE SENSING

Remote sensing provides the most suitable systematic approach for collecting spa-
tial information on human settlements. Earth observation has been focused on map-
ping, monitoring, and understanding urban phenomena for many years, but with
more emphasis on local to regional scales. Global mapping of human settlements is
particularly challenging because of the spatial and spectral heterogeneity of urban
environments, as well as their small and fragmented spatial configuration. In fact,
there is large disagreement between urban land represented in different global land
cover products (Figure 2.1; see also Schneider et al., 2003; Potere and Schneider,
this volume). Different reasons can be cited: challenges in mapping urban areas with
coarse-scale Earth observation systems; different definitions of “urban” and vary-
ing mapping standards; issues with integrating different data sources; problems in
precise geolocation of spatial datasets; and the importance of update information
because urban areas are evolving quickly. Thus, global urban mapping can, in most
cases, currently only marginally deliver what is needed to approach the multitude of
challenges resulting from continuous urbanization and population growth.

The recent proliferation of new sources of data and tools for data processing,
analysis, and modeling has provided and opened up avenues for significant prog-
ress toward global observations of urban patterns and dynamics. Because of the
heterogeneity of global urban characteristics, the key issue is to combine Earth
observation indicators for characteristics and change in human settlements. Sensors
such as Moderate Resolution Imaging Spectroradiometer (MODIS) or LANDSAT
give spectral evidence for built-up areas and the land cover configuration within
urban environments; nighttime observations by Defense Meteorological Satellite
Program (DMSP) are a strong indicator of populated areas and population distribu-
tion; synthetic aperture radar (SAR) measurements emphasize the three-dimensional
characteristics of urban surfaces; thermal infrared data contain information about
energy fluxes and local climatic conditions.

Previous global activities have applied a variety of data sources, mapping and moni-
toring strategies, and analysis methods to study urban phenomena on global scales.
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Séao Paulo
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FIGURE 2.1 Comparison and agreement of urban land in three different global land cover
products: International Geosphere-Biosphere Programme-Data Information System (urban
areas from digital chart of the world), MODIS land cover [urban areas from MODIS (2000),
DMSP (1994-1995), and ancillary data], and GLC2000 [urban areas from the Defense
Meteorological Satellite Program (1994-1995)].

The most comprehensive information on global urban dynamics has been derived from
statistical datasets describing demographic, socioeconomic, and economic indicators
of urban characteristics and quality. On global scales, this information usually exists
in rather coarse spatial precision, with large time steps for updating, and sometimes
the data are not consistently available for specific regions (e.g., developing countries).
More details can be provided by Earth observation. Remote sensing data sources for
coarse scale urban mapping have been multifaceted: optical data (Schneider et al.,
2003), thermal measurements (Hafner and Kidder, 1999), active radar data (Henderson
and Xia, 1997; Grey et al., 2003; see also Dell’Acqua, this volume), and nighttime-
lights DMSP data (Imhoff et al., 1997; Henderson et al., 2003). The data sources have
been used to study a variety of urban phenomena such as urban ecosystems (Miller and
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Small, 2003), urban climates (Voogt and Oke, 2003; Trana et al., 2006), urban popu-
lation (Sutton et al., 1997; Small, 2003; Liu et al., 2006), health and disease (Tatem
and Hay, 2004), urban growth and change processes (Phinn et al., 2002; Seto and
Kaufmann, 2003; Herold et al., 2003), and others. Despite the availability of several
global land cover datasets including urban areas (see Potere, this volume), comprehen-
sive global urban monitoring programs have so far been studying selected representa-
tive cities in high spatial and temporal detail. The observations and analysis provide
general assumptions about ongoing processes on coarser scale (Lavalle et al., 2001;
Beckel et al., 2002). Often, Earth observation mapping and monitoring offers suffi-
cient information for analysis of urban form and spatial processes toward support and
improvement of urban modeling, management, and planning efforts, and advances in
understanding urban phenomena in a theoretical context (Herold et al., 2007).

2.4 INTERNATIONAL LAND OBSERVATION
INITIATIVES AND PROGRAMS

Several international Earth observation initiatives are currently active and con-
nected for global and regional scale observations. Figure 2.2 outlines their relation-
ships and roles; the initiatives will be discussed in more detail in this section. Their
general goal is continuity and consistency for observations providing high-quality
data and information in support of sustainable development and natural resource
management. There are high level and political processes — that is, the Group
on Earth Observations (GEO) and the United Framework Convention on Climate

GEO(SS), UNFCCC, WSSD, MEA ... REQUIREMENTS

International Sponsors of GTOS: IGOS Partnership

FAO, UNEP, ICSU, UNESCO, WMO Committee on

Earth

: >
s s
GOOS Global Terrestrial sfsg;lgt;s ate lt;sci ) E
Observing System (GTOS) ° ) ed
Cal-Val =
Technical
Panel
GOFC-GOLD
“me;:zer,, Science 13:;: IMPLEMENTATION

FIGURE 2.2 The big “picture” in global Earth observations: organizations and agencies
involved in defining requirements, strategies, and implementation activities.

© 2009 by Taylor & Francis Group, LLC



16 Human Settlement: Experiences, Datasets and Prospects

Change (UNFCCC) — that specify requirements as frame for efforts on the more
strategic Earth observation level. The Integrated Global Observing System (IGOS)
Partnership involves a number of partners that formulate observation strategies and
technical implementation guidelines for implementation by national or international
agencies and organizations. On the implementation level, there are organizations
such as Global Observation of Forest Cover and of Land Dynamics (GOFC-GOLD;
http://www.fao.org/gtos/gofc-gold). As the technical panel of Global Terrestrial
Observing System (GTOS; http://www.fao.org/gtos), it provides the interface between
the strategic and the implementation level. GOFC-GOLD provides a communication
and cooperation platform for actors involved in global Earth observation including
data producers (e.g., space agencies, land cover facilities), the scientific community,
and data users (FAO, UNEP, global modeling community, etc.). GOFC-GOLD has
proposed a program of annual coarse resolution (250—1000 m) Earth observations,
fine-scale land cover mapping (~25 m) on a 5-year cycle, and integration with in
situ observations on global scales (Townshend and Brady, 2006). Perhaps, the pro-
grams and processes on Earth observation are not solely targeted at urban monitor-
ing. Their role and approaches in addressing urban issues will be discussed in the
following sections.

2.4.1 Grour ON EARTH OBSERVATIONS

The GEO (http://earthobservations.org/) followed a G8 initiative that called for
strengthened cooperation and coordination among global observing systems and
research programs for integrated global observations. GEO emerged in 2003 from a
consensus among governments and international organizations that, while support-
ing and developing existing Earth observation systems, more can and must be done
to strengthen global cooperation and Earth observations. The GEO vision was for-
mulated in the Washington Declaration adopted at the Earth Observation Summit of
2003. Since this declaration in 2003, the GEO process has resulted in a variety of Earth
Observation Summits, the latest a ministerial summit at Cape Town in November
2007. As its most comprehensive early achievement, GEO has defined nine areas of
societal benefits where society can directly benefit from Earth observation.

The GEO process has outlined a framework document calling on Global Earth
Observation System of Systems (GEOSS). Although not legally binding, this docu-
ment marks a crucial step in developing the 10-Year Implementation Plan for the
creation of a comprehensive, coordinated, and sustained Earth observation system or
systems. For implementation, there is a GEO 2007-2009 work plan in place.

Given the current draft of the GEOSS implementation plan (GEOSS, 2005), global
urban mapping is mentioned in several circumstances (Table 2.1). Several aspects of
urban mapping are described as areas of societal benefit. It should be noted that
some of these observation requirements are beneficial to several of these areas and
are not mentioned twice. Urban extent and land use/land cover maps are considered
to be not yet widely available or not yet adequately monitored globally but could be
within 2—-10 years. One parameter not mentioned in Table 2.1 is transportation infra-
structure that also is called on in the GEOSS implementation plan.
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TABLE 2.1
GEO-Defined Areas of Societal Benefits and Earth
Observation Objectives for Urban Mapping on Global Scales

Societal benefit area Global Earth observation requirements referring to
urban areas
Disasters Human infrastructure
Health Urban heat island and air quality
Population density
Land cover
Energy Land use and land cover
Urban extent
Climate Land cover
Water Land use

Industrial water demand

Population density
Ecosystems Population density
Agriculture Land cover

Population density

Most of the urban mapping features (e.g., urban extent, land use, land cover, etc.)
are considered to be not yet widely available or not yet adequately monitored glob-
ally but could be within 2—10 years. The GEOSS plan also emphasizes the need for
integrative analysis of the Earth observation mapping products, that is, gaps exist
in the integration of relevant existing observation systems, for example, integrat-
ing the global urban land observations with data that characterizes the built envi-
ronment, chemical emission, and with indicators of environmental quality, health,
and disease. Despite the relevance emphasized in the GEOSS Implementation Plan
(GEOSS, 2005), and a specific GEO task dealing with global land cover (Herold,
2007), current GEO implementation lacks activities relating to land use and urban
issues.

2.4.2 INTEGRATED GLOBAL OBSERVATIONS OF LAND

The Integrated Global Observing Strategy (IGOS; http://ioc.unesco.org/igospart-
ners/) was established in 1998. Its main objective is the definition, development,
and implementation of an Integrated Global Observing Strategy. IGOS brings
together efforts of a number of international agencies concerned with global
environmental issues, research, and observing systems. IGOS theme documents
are a primary source of requirements for the development of GEOSS. However,
the IGOS Partnership (IGOS-P) has not yet considered many observational needs
relating to many aspects of the land, such as sustainable economic development,
natural resources management, conservation and biodiversity, ecosystems (func-
tioning, services), biogeochemical cycling, multilateral environmental agreements
(development, implementation), mandatory reporting and monitoring. A new IGOS
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theme was recently added on Integrated Global Observations for Land (IGOL;
Townshend et al., 2007). The main components of the new theme are as follows:
land cover and land use, human settlement and population, managed ecosystems,
agriculture, pastoralism, forestry, natural ecosystems, conservation, biodiversity,
sustainable use, soils, biogeochemical cycles, and elevation. In the context of global
remote sensing of human settlements, it is emphasized that satellite data informa-
tion can improve decision making in a number of application areas, including:

e Spatial modeling of population variables such as population and settlement
density (both urban and rural), land use patterns, civil infrastructure, and
some types of economic activity.

e Improved modeling of the flow of food, water, energy, disease vectors,
and their consequences for natural systems including ecosystem and plan-
etary metabolism.

e The location and density of infrastructure for use in hydrologic modeling,
flood prediction, the assessment of land use and land use change, analyzing
human impacts on biodiversity, and threats to public health.

* Monitoring, management, and mitigation of natural disasters.

e Urban planning and more effective location decisions and development of
support infrastructure.

e Spatial modeling of atmospheric emissions associated with fossil fuel con-
sumption and other anthropogenic activities.

In terms of global urban mapping, IGOL emphasizes the need for coordinated global
urban observations with the fundamental focus on reliable and spatially explicit
settlement and population databases, transportation infrastructure information,
and understanding urban change processes. IGOL is now in the process of being
integrated into GEO and once again urges this effort to take on urban monitoring
issues.

2.4.3 GLOBAL MONITORING FOR ENVIRONMENT AND SECURITY

The objective of this initiative is to “‘establish by 2008 a European capacity for Global
Monitoring for Environment and Security (GMES)” (http://www.gmes.info). GMES,
as a joint initiative of the European Commission and the European Space Agency
(ESA), aims to support Europe’s goals regarding sustainable development and global
governance, in support of environmental and security policies, by facilitating and
fostering the timely provision of quality data, information, and knowledge. As part
of the GMES, an “Urban Services” section (http://www.gmes-urbanservices.info/)
has been established. The objectives do not especially refer to global scale urban
mapping. GMES priorities in urban mapping are set on local and regional scales to
assist urban management and security. The so-called “Fast Track Service” for land
monitoring includes a specific European-wide mapping exercise of impervious areas,
a process that was started in 2007. Seifert (this volume) provides additional informa-
tion on these initiatives.
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2.4.4 MILLENNIUM ECOSYSTEM ASSESSMENT

The MEA (http:/www.millenniumassessment.org/) is a UN-initiated international
work program designed to meet the needs of decision makers and the public for
scientific information concerning the consequences of ecosystem change for human
well-being and options for responding to those changes. Being tailored at ecosys-
tems, the observation requirements focus on mixed patterns of human use and
ecosystems that emphasize on the spatial extent of urban areas. A further focus is on
the urbanization processes and on population growth as drivers of ecosystem change
on different spatial and temporal scales.

2.4.5 GroBAL CLIMATE OBSERVING SYSTEMS IMPLEMENTATION PLAN

In support of the UNFCCC, the Global Climate Observing System (GCOS; http://
www.wmo.ch/web/gcos/gcoshome.html) has completed an implementation plan in
October 2004 (GCOS, 2004) to outline the requirements and actions to provide
an appropriate database in the implementation of the UNFCCC objectives and the
Kyoto protocols. The focus of this implementation plan is on climate but specifically
calls on land cover and changes (and use) on global scales as important terrestrial
variables to be derived from Earth observation.

2.4.6 GTOS CoAsTAL IMPLEMENTATION PLAN

The GTOS implementation plan on coastal zones (http://www.fao.org/gtos/doc/
pub36.pdf) emphasizes the importance of urban areas in this environment because
about half of the world population lives within 200 km of the coast. The IGOS
Coastal theme already places a priority on urbanization in coastal zones. Coastal
GTOS implementation plan specifies several aspects, that is, the rate of change in
population, urbanization, and land use in coastal environments. The report discusses
“best available global datasets” and their current limitations and prospects includ-
ing the Department of Energy Landscan Ambient Population, the DMSP Nighttime
Data, the global Landsat mosaics, the ESA GLOBCOVER product, and the MODIS
land cover/urban product and vegetation continuous field datasets.

2.4.7 UN GrosaL LAND Cover NETWORK

The Global Land Cover Network (GLCN, ftp:/ftp.fao.org/docrep/fao/004/y3726e/
y3726e00.pdf), launched by FAO and UNEP, is an international coordinated effort
whose objective is to provide direction, focus, guidance, and standards for harmoniza-
tion of land cover mapping, and monitoring at national, regional, and global levels.
The initiative is based on the recommendations of the Agenda 21 for coordinated,
systematic, and harmonized collection and assessment of data on land cover and envi-
ronmental conditions. GLCN aims at generating essential data needed for sustainable
development, environmental protection, food security, and humanitarian programs
of the UN, and of other international and national institutions. The major objectives
of this initiative are on harmonization and standardization of classification of cover
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types, the determination patterns of land cover and its associated change, projections
of human response scenarios, support to integrated global and regional modeling, and
the global assessment of land cover for international conventions and treaties. The
GLCN strategic documents are currently in development and will also address issues
of urban mapping and monitoring and related expectations for Earth observations, and
standardized mapping using the UN Land Cover Classification System (Di Gregorio,
2005).

2.5 REMARKS AND RECOMMENDATIONS

Urban areas and their dynamics are one of the main drivers of land change on local to
global scales. With small and fragmented spatial and spectrally heterogeneous char-
acteristics, their accurate mapping and monitoring has been challenged in the past
and certainly has not received as much attention as the global observation of other
land types such as forests. A number of satellite remote sensing systems collect data
relevant to the global mapping and monitoring of human settlements. Despite a focus
on global observations, to data products have to be derived, analyzed, and refined in a
multiscale context. Urban phenomena can be observed and show specific characteris-
tics on different levels of spatial and temporal and detail. Linking coarse-scale (250—
1000 m spatial resolution), fine-scale (20-50 m spatial resolution), and very fine-scale
(1-4 m spatial resolution), and in situ observations should be the central perspective in
any related activities. Continuity in Earth observations on all these scales is essential
to support such progress. Currently, coarse-scale observations (e.g., MODIS, MERIS,
SPOT VEGETATION) and LANDSAT-type observations are widely available. This
level of continuity does not exist for the other scales. Ongoing international collabora-
tion is needed to produce consistent global maps of human settlements using multiple
sources. A multistage approach could be adopted to reduce the extent of data collection
and processing of data from ultrafine spatial resolution systems. For instance, coarse
resolution nighttime lights could be used to define the collections plans for higher spa-
tial resolution systems. Key to the value of any effort for global mapping of human set-
tlements is timely product generation and distribution. In general, updates are required
on an annual basis with a distribution latency of a year or less. The establishment of a
global urban observatory further provides great opportunities to establish successful
cases for data integration that is desired in many fields of global Earth observation.
Synergy of satellite data from different sensors (DMSP, MODIS, SAR, etc.), linking
observations to socioeconomic and demographic information, bridging across and
among different scales, and relating empirical measurements, spatial theory, and mod-
eling have been proven to be successful in an urban context. These potentials should
be further elaborated on for global scale assessments. Recently there have been some
proposals for satellite missions primarily targeted urban monitoring. For example,
Nightsat is a concept for a satellite system capable of global observation of the location,
extent, and brightness of nighttime lights at a spatial resolution suitable for the delinea-
tion of primary features within human settlements (Elvidge et al., 2007).

Recent developments emphasize the need for sustained, harmonized, and vali-
dated global Earth observation products of human settlements, that is, by the GEO
formed in 2003 aiming to evolve a Global Earth Observation System of Systems
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(GEOSS), the European GMES initiative, the GCOS implementation plan calling on
land cover, and the requirements advocated by the IGOL. They emphasize a political
and strategic mandate. Although these initiatives have long-term goals, they have to
start and evolve from an international cooperation and consensus building efforts,
both on the strategic level and in implementation activities. It is to be recognized that
ongoing international processes on building interoperable spatial data structures and
interface specifications such as Infrastructure for Spatial Information in the European
Community (www.ec-gis.org/inspire/) and the Open Geospatial Consortium (Www.
opengeospatial.org) are dealing with a wide range of issues and perhaps would
require more detailed consideration of urban monitoring issues in the future.

Given these elaborations, there are several recommendations to the Earth obser-
vation community interested in pursuing a global Earth observation survey of urban
areas and urban change:

* Tolearn from the experiences in previous global environmental assessments,
a global urban monitoring and assessment effort should be set up as an
international process to evolve over time, involve relevant national to global
stakeholders and networks active in land cover and urban monitoring, and
closely interact and engage with user agencies and policy makers.

» Full advantage should be taken of initiatives such as GEO and IGOL. They
have advocated the importance of global urban monitoring and provide doc-
umented requirements and expectations for global urban monitoring pro-
grams but, so far, have not engaged in dedicated implementation activities.

* Any global and regional urban data products have to be harmonized, acces-
sible, validated, and flexible to provide the best match between observa-
tions, data products, and user requirements.

* Consistency of information is essential from global to local scales and
requires a common classification scheme for built environments and settle-
ments (see discussions by Jansen, this volume).

» Integration of different satellite data sources is essential for accurate urban
mapping on global and regional levels. This relates to different data sources
for global observations and more detailed observations to link observations
and data among scales.

*  Most previous results from global urban change analysis were derived from
socioeconomic and demographic data, and remote sensing efforts should be
complementary and integrated with these efforts.

Because these efforts have long-term goals, these recommendations may seem
ambitious and broad. However, there is a clear opportunity to start such activities
in the near future and improve satellite-based observations toward a global urban
assessment. Obvious starting points on the technical side are to use existing satel-
lite and nonsatellite data sources and products to make best integrated use of exist-
ing information, and to even better address and contribute urban issues to ongoing
monitoring initiatives (i.e., MODIS land cover, GLOBCOVER, GMES, etc.). In
addition, there is a need to better reflect urban monitoring issues in active inter-
national processes (e.g., GEO) that lack current specific urban activities. In this
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context, any integrated large-scale urban assessments should perhaps be driven
by needs associated with the areas of societal benefits advocated by GEO (see
Table 2.1), and the goods and services provided by the urban ecosystem (Constanza
and Folke, 1997).
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3.1 INTRODUCTION

Describing human settlements by remote sensing data has always been a challenge
since the field of Earth observation began more than 50 years ago. General disci-
plines dealing with human settlement description have often reported difficulties in
using available satellite-derived information to describe these settlements. We refer
here not only to such disciplines as urban and regional planning, and design and
development, but also to sectorial activities related to risk assessment or damage and
reconstruction assessment. During these years, the conventional explanation for this

27
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difficulty was mainly attributed to a technological gap — in short, to a lack of spatial
resolution in the available civilian satellite data. The fact that broad-scale planning
activities (e.g., regional strategic spatial planning) also usually ignored traditional
satellite value-added products was omitted in the cited explanation. When noted, this
fact was commonly linked to a general lack of “communication,” with practitioners
or urban planners being unaware of the potentialities of satellite-derived products.

The latest-generation very high resolution (VHR) satellite data are now approach-
ing the spatial resolution of airborne image data (Baltsavias and Gruen, 2003).
These data have been profitably used by cartographers and urban planners since
airborne photogrammetric technology became available after the Second World
War. Contrary to expectations, however, the situation regarding the exploitation of
satellite remotely sensed data by decision makers and urban planners has not shown
any radical improvement.

Remote sensing specialists are now realizing that the capacity to extract informa-
tion from satellite data has not kept pace with the improvement in image spatial reso-
lution. VHR data are much more complex in the spatial domain. Geometric increase
in the volume of data to be processed and the difficulty in geocoding the data with
an absolute spatial accuracy comparable with the pixel size are the two main techni-
cal reasons that make VHR data preparation for automatic recognition, including
change detection, a difficult task.

In extracting information from VHR satellite imagery, it also appears that the
standard model postulating spectral homogeneity of the classes to be extracted is
encountering several major difficulties. This is because a greater amount of detail
generates increase in internal class spectral variability, and consequently a decrease
in discrimination power of any method based on collection and processing of pure
spectral image features.

From another viewpoint, the ability to acquire (by visual interpretation) greater
amount of details in new-generation satellite data has revealed the inadequacy
and the excessive simplification of the traditional method of structuring informa-
tion extracted from remotely sensed data, say the land use/land cover (LU/LC)
paradigm that dominated the remote sensing methodological debate in the past
50 years.

One of the basic concepts presented in this work is that a really effective remote
sensing of human settlements needs the harmonic development of three basic areas:
remote sensor technology; information extraction methodology; and conceptual tools
able to handle the extracted information, say the classification scheme. These three
areas should go together; an unbalanced progress involving only the sensor technol-
ogy, for example, would result in failures on the application of outdated information
extraction models. Similarly, progress on sensor technology and information extrac-
tion methodology would be ineffective if we maintain the same classification schema
tuned for the preceding situation.

This work tries to address these issues applied to the analysis of human settlements
by arguing (1) a special status and characteristic of the settlement theme that make
difficult the traditional approach of remote sensing, (2) the need of new methodologies
for extracting information on settlements from satellite data, and (3) the need of a new
paradigm for structuring the extracted geoinformation in more effective data models.
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In particular, the special status of the settlement theme is described as complex-
ity of the use context of the information about the human settlement, and as specific
physical characteristics (the spatial heterogeneity of internal materials and mimetism
with the surrounding areas) that break the standard remote sensing model postulating
spectrally homogenous and distinguishable classes to be recognized.

Because of the specific physical characteristics of the settlement theme, we argue
the importance of processing the image structural information in order to improve
the effectiveness of the automatic discrimination and analysis of the settlement’s
elements using satellite data. Because of the specific use content of the information
about settlements, we argue the necessity of reducing the rigidity of the conceptual
paradigm used for storing and representing the extracted information, say the LU/LC
standard classification schema. This is done by modulating the semantic abstraction
of the extracted information in three levels, and consequently by avoiding the rapid
obsolescence of too abstract or high-level and user-specific semantics. As described
in the following paragraphs, these abstraction levels have different matches with
possible techniques for image automatic recognition and analysis, and they may have
different logical compositional constraints.

3.2 SPECIFICITY OF THE SETTLEMENT THEME

The specificity of the settlement theme is related to a specific complexity of the use
context or application field, and to specific physical characteristics described as inter-
nal heterogeneity of material and similarity or mimetism with other natural surfaces.

3.2.1 CompLexity oF THE Use CONTEXT

Settlements display the highest concentration of human artifacts and functions and
are the most valuable part of the territory for human societies. In fact, settlements
typically show the maximum concentration of human activity, of manmade struc-
tures and objects. Urban areas also show the maximum of stratification of differ-
ent functions in the same place. Settlements show overlapping economic interests
among social groups as well as with and among public authorities. Urban areas
also typically show the highest social stratification and differentiation that is often
coupled with historical development and identity that define priorities and agendas
of different social groups. All these multiple stratifications of interests and func-
tions produce a remarkable multiplicity of point of views, equally valid but not
coincident, of the settlement “fact” or geographic physical entity. This situation
explains why human settlement is hardly reducible to a unique descriptive scheme,
whereas for other type of Earth surfaces, say “forest” or “corn field,” such reduc-
tion can be eventually more successful. This is because in these other cases, it is
easier to reach consensus on a common descriptive scheme defining priorities and
semantic hierarchies.

Different functions and priorities also define a multiplicity of possible actions on
settlements, as is the case with different planning and management strategies. The
required information on settlements can therefore remarkably diverge in terms of
scales, semantics, priorities, and timeliness, by varying the social actor, the public
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authority, or the given point of view defining a specific “user.” We describe this
situation as complexity of the use context of the information regarding the human
settlement. No unique description can be fully effective, but all descriptions have the
same or comparable importance.

3.2.2 PHysicAL CHARACTERISTICS

We can define human settlement as composed by three basic classes of physical
elements that are visible in the remotely sensed data: buildings, roads (or moving
infrastructures), and remaining open spaces. All these elements contribute to define
the built-up pattern, also called urban area, urban fabric, man-made area, settlement
surface, and so on.

From the viewpoint of physical composition, the built-up pattern can be defined
as the place of heterogeneity. Almost all possible materials and surfaces, including
artificial and organic materials, can be reported as belonging to the settlement theme
in the same places all over the world. Moreover, in many cases we may observe that
several different materials can be used for the same built-up element of the same
settlement (i.e., clay tiles, corrugated metal, grass, concrete, plastic, bitumen, stone,
for building’s roof) and in the same time the identical material for different elements
(i.e., the same stones for paved roads and building roofs). The spatial scale of vari-
ability of these different materials is typically about a few meters. This situation is
described here as internal spatial heterogeneity of the Earth surfaces covered by
built-up patterns.

Furthermore, because settlements are also often made up of materials present in
the surrounding natural areas, it is possible that they will not be distinguishable from
the natural or agricultural areas, if we take into account only the characteristics of
the materials or the surfaces. Typical examples are unpaved roads and bare soils,
but also many roof materials (as clay tiles or stone tile) and again bare soil or rocks.
Another typical example is the vegetated open spaces in settlements, as private green
surfaces in residential areas, or parks, and other public recreational surfaces present
in many settlements. This situation is described here as mimetism between the settle-
ment theme and the surrounding areas.

3.3 EXTRACTING INFORMATION ON SETTLEMENTS

3.3.1  IMPORTANCE OF IMAGE STRUCTURAL INFORMATION

It is well known that we can consider any digital image, and consequentially, also
satellite data, as composed by two basic families of information or “descriptors”: the
spectral descriptor and the spatial or structural descriptor. Whereas spectral infor-
mation reports on the spectral reflectance of the electromagnetic energy for each
individual image point (or picture element, pixel), structural information refers to
the mutual spatial arrangement of these pixels. Structural information is defined by
a given local domain [also called kernel, structuring element (SE), neighborhood,
and the like) and an information extraction rule involving in some way the pixels
contained in the given local domain. Because it is the spectral information that is the

© 2009 by Taylor & Francis Group, LLC



A Methodology to Quantify Built-Up Structures from Optical VHR Imagery 31

primary source, structural information has a higher abstraction level: we can say that
the structural information is always derived from the primary spectral information
contained in the image data.

The standard paradigm for automatic image understanding in remote sensing was
based on the following assumptions: (1) the classes to be recognized are made up
of the same surfaces, the same surfaces are reflecting the same energy with the
same given illumination, then they are spectrally homogeneous; (2) as a corollary,
different classes are assumed distant in the space defined by their spectral attri-
butes. Therefore, we can say that the standard automatic image understanding or
information extraction paradigm in remote sensing was mainly based on exploitation
of image spectral information. Because of the specificity of the human settlement
theme (say the internal spatial heterogeneity and the mimetism with the surrounding
areas), the standard information extraction paradigm for remote sensing does not
give fully satisfactory results. If blindly applied, it may lead to unpredictable results
usually strongly depending on local geographic conditions and characteristics of the
settlement under study. The situation where the same material with the same illumi-
nation conditions (then the same measured spectral reflectance) identify all the same
elements of a given built-up pattern and is not present in other types of surfaces of
the same data set is more a special case than a general rule. Moreover, the rarity of
this special case is directly proportional to the number of satellite scenes, or datasets,
it is needed to interpret automatically with the same inferential model (thus directly
proportional to the universe of data to be analyzed).

The structural information refers to the mutual spatial arrangement of image
pixels in a given local domain. Because of the internal spatial heterogeneity of the
settlement theme, different surface materials close together may produce character-
istic spatial patterns of spectral reflectance that can be captured by techniques able
to handle image structural information. Moreover, by definition built-up structures
are extruded from the ground level of at least one floor, and consequently they are
often casting shadows with a size detectable by the latest-generation satellite sensors.
Shadows in VHR data greatly contribute to the heterogeneity of the detected spectral
signal in a given spatial domain, but they may also produce characteristic spatial
patterns that can be described by techniques able to handle image structural infor-
mation. For these reasons, the image structural information has shown to be useful
for the description of human settlement.

We may distinguish between two basically different ways of conceptualizing
image structural information: one is focused on measuring the repetition of image
elements in a given spatial domain (also called image texture), whereas the other is
focused on the description of single image structures (also called regions, segments,
or objects) by their shape or size characteristics. The application of these two concepts
on the analysis of human settlements using remotely sensed data will be discussed in
Sections 3.3.2 and 3.3.3, respectively.

3.3.2 ABout IMAGE TEXTURE

Image texture, defined as a function of the spatial variation in pixel intensities (gray
values), is useful in a variety of applications and has been a subject of intense study
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by many researchers. In remote sensing, the notion of texture dates back to the
pioneering work of Haralick et al. (1973) and Haralick (1979). Numerous different
methods of formalizing the concept of “image texture” can be found in the image
processing literature; they can be described as geometric, random field, fractal, and
signal processing models of texture including Gabor and wavelets filters (Tuceryan
and Jain, 1998).

The general interest in the exploitation of image textural information with regard
to the discrimination of built-up structures (defined as “urban areas”) was already
demonstrated by Gong and Howarth (1990 and 1992) and recent contributions by
Zhang et al. (2003) and Puissant et al. (2005), merging in a similar manner radio-
metric and textural information to improve the urban classification. Mynt (2003)
demonstrated the use of wavelets for the study of settlement patterns using remotely
sensed data.

The usual means of merging spectral and textural information in the same classifi-
cation scheme assumes Gaussian distribution and/or avoids taking into consideration
the possible dominance phenomena due to different data scales and statistical distri-
bution of textural and radiometric values. This standard method of fusing textural and
radiometric information in the same classification scheme was criticized by Pesaresi
and Bianchin (1996). As an alternative, Pesaresi and Bianchin (1993) and Pesaresi
(1994) demonstrate the effectiveness of processing data in two separate chains by
exploiting in parallel the radiometric and structural information, and including a
knowledge-based final integration step.

In any case, it has been demonstrated that having an input image data set with
the necessary spatial resolution approaching the size of built-up structures, the use
of radiometric information becomes less relevant and occasionally even adds more
noise than discriminatory information. As an alternative approach, Pesaresi and
Bianchin (1996) proposed to exploit only morphological and textural information,
whereas Pesaresi (2000) demonstrated that textural information alone extracted
from panchromatic imageries was adequate for efficiently discriminating between
urban and nonurban patterns as well as between different urban patterns.

Lafarge et al. (2005) used textural features as input of a support vector machine—
supervised classification procedure for detection of forest fire and urban areas using
high-resolution images, whereas De Martino et al. (2004) used spectral and tex-
tural features by means of a hierarchical clustering algorithm allowing partially
supervised classification. Plaza et al. (2007) presented a joint spatial/spectral clas-
sification approach for hyperspectral imagery that is shown to perform effectively
in a complex urban environment. In the work of Peijun et al. (2007), urban textural
recognition is done by exploiting morphological multiscale characteristics, whereas
Zhong and Wang (2007) used image texture derived from multiple conditional
Markov random fields model to extract urban areas from monospectral satellite
data. In the work of Pesaresi et al. (2008), a simplified “built-up presence index”
extracted from images using anisotropic rotation-invariant textural measures is
presented and evaluated in a realistic scenario. In the discrimination of built-up
patterns, the proposed index shows good accuracy and robustness against seasonal
changes, multisensor, multiscene, and data degradation by wavelet-based compres-
sion and histogram stretching.
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FIGURE 3.1
extraction of settlement area from SPOT 4 imagery; (c) shows the result of the visual int
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ExXAMPLE: VENETO REGION, ITALY

Figure 3.1 (left) shows part (7.5 x 24 km) of the result of the automatic extraction of
built-up areas using as input a collection of Spot scenes. The test was conducted in
1995 in the frame of a consultancy for the Administration of the Regione Veneto, with
the purpose of studying the status of built-up areas in the central area of the region; the
derived data set was then presented in a number of international seminars (Pesaresi,
1995), and used in a number of studies at the University of Venice (Munarin and Tosi,
2001). The test was performed by classifying the data recorded by the panchromatic
sensor of the Spot satellite, with a spatial resolution of 10 m, which was the maximum
spatial resolution offered by satellite remote sensing technology at the time. The dark
structures in the image represent built-up structures on the ground with 98% accuracy
at a scale 1:25,000.

The data set shown has been chosen only arbitrarily as a historical example. It
was the first satellite data set automatically interpreted using an integral texture-based
approach. At any rate, the observations reported below are confirmed by several other
classification exercises done in the following years in different geographic contexts

’)I 7_‘ IF 4, '5' f“ T J

Veneto Region, Italy: (a) shows the result of the built-up index, an automatic
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pretation; and (b) shows in dark gray the built-up areas mapped by built-up index and visual
interpretation and in light gray, as well as the built-up areas missed by visual interpretation.
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and using various satellite sensors with similar methodologies. The methodology for
extraction of built-up structures was an early version of the one presented in the work
of Pesaresi et al. (2008), where more technical details can be found. The discrimination
of the built-up structures was based only on image structural information extracted by
calculating anisotropic rotation-invariant contrast textural measures from monospec-
tral satellite data. Consequently, it was a clear methodological change with respect to
the usual approach based on image spectral information, or trying to merge spectral
and structural information in the same classification procedure.

The right panel of Figure 3.1, which shows the same portion of the territory, pres-
ents the “urban” classes derived from CORINE LC 1990, a standard product made
by visual photointerpretation of satellite data; the middle panel shows a comparison
between the two sources.

There are several noteworthy main differences: automatically image-extracted
information is reproducing in a more objective manner scattered built-up structures and
built-up structures along the road that are sometimes lost in the visually interpreted land
cover representation. This occurs not (only) because of different scale of representation
or presence of random errors in the visual detection workflow. In fact, not all built-up
structures or “urban areas” with the same size are equally lost or retained in the visu-
ally interpreted land cover that is defined by a given scale or minimal mapping unit.
Assuming the same scale, we can detect that several built-up structures are retained and
several are lost with arbitrary choice. Automatically derived information can be more
consistent than the visually derived one, because the machine is always producing the
same output giving the same signal in input and the same processing procedure.

We can note that the inconsistencies are mainly related to the different cost curbs
of the manual and automatic procedures. The visual interpretation cost grows linearly
with the number of entities to be detected; consequently, it tends to generate compact
and simplified representations of the geographic reality, assuming a finite time/resource
available and a priority list putting bigger structures first. The cost of automatic inter-
pretation procedure is instead indifferent to the number of entities to be detected, but
only linearly relate to the surface to be analyzed.

Finally, note the dark blob in the upper right corner of the visually interpreted
land cover image (Figure 3.1, left) that is instead absent in the texture-derived built-
up patterns (Figure 3.1, right). This is an airport that usually belongs to the “artificial
surfaces” in the LU/LC classification scheme and then was aggregated into the “urban”
class represented in black. In the real world, from the physical point of view, the air-
port is not only a built-up structure but is also (mostly) a flat open area. The automatic
texture-based recognition system is (correctly) detecting only the signal generated by
the buildings belonging to the airport area but are ignoring the flat surfaces of the air-
field. This is done also if these flat surfaces belong to the abstract concept of “airport”
and “artificial surface.” Naturally, if we are to use this LU/LC data set of reference for
assessing the accuracy of the automatic recognition process, we would take into account
the flat airfield area as part of the omission error of the recognition procedure.

From the point of view of image analysis, we can easily agree on the fact that the seman-
tics involved in the notion of “built-up structure” is less abstract than the one involved in
the definition of “airport.” Similarly, we can say that the basic notion of built-up structure
can be found as conceptually belonging to more semantically complex LU/LC classes as
“urban areas,” “rural villages,” “farm nucleus,” “isolated dwellings,” and so on.

This example depicts well the inverse relationship between the level of abstrac-
tion of the classification scheme and the robustness of the automatic recognition pro-
cedure based on physical parameters (either spectral or structural) extracted from
the remotely sensed data. This example is also useful in recalling the necessity of
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harmonic development in the three basic areas of remote sensor technology, infor-
mation extraction methodology, and conceptual tools able to handle the extracted
information, say the classification scheme. All these issues will be addressed in the
following paragraphs.

ExAMPLE: NAIROBI CITY, KENYA

Figure 3.2 compares the basic built-up pattern derived from texture-based automatic
satellite image interpretation and the “urban” surface derived from available datasets
at the global level. The example is taken from a collection of 50 cities and “urbanized
regions” all around the world where the European Commission Joint Research Centre
is doing the same comparative exercise focused on the definition of a globally robust
methodology for detection of human settlements in remotely sensed data.* The area
represented here is about 35 x 35 km, covering part of the city of Nairobi, Kenya, and
the region in the north. Figure 3.2(a) shows the radiometric signal recorded by the
satellite Spot Panchromatic sensor in 2006, whereas Figure 3.2(b) shows the structural
information captured by the texture-derived built-up index as defined by Pesaresi et al.
(2008). Note that, although spectral information discriminates mainly between veg-
etated and not vegetated areas, structural information discriminates mainly between
built-up and not built-up areas that are evident at regional level and also with the strong
degradation needed for showing the data set in the small space of the page.’

Figures 3.2(c) and 3.2(d) show the same area of Nairobi represented by two available
global datasets derived from satellite data and reporting on the presence of “urban”
areas on the ground. Figure 3.2c is extracted from the global land cover classification
for the year 2000 (GLC2000) produced by JRC using the low-resolution VEGA2000
data set, providing a daily global image from the Vegetation sensor onboard the
SPOT4 satellite. The methodology is based on a mixture of supervised and unsuper-
vised automatic classification of the spectral information. Figure 3.2(d) is extracted
from the database of “Urban Extent Mask™ available from the Global Rural-Urban
Mapping Project (GRUMP),* produced by the Centre for International Earth Science
Information Network (CIESIN) of the Earth Institute at Columbia University. In this
case, the potential “urban” areas are discriminated by using the radiometric infor-
mation recorded by the Operational Linescan System of the U.S. Air Force Defense
Meteorological Satellite Program. The inferential model used here assumes a direct
relationship between the presence of stable night lights and the presence of human set-
tlement. The “Urban Extent Mask” is then derived by merging satellite-derived urban
areas and population census data. Both examples are mainly based on the processing of
the radiometric information of satellite sensors. Whereas the first example (GLC2000)
is derived from a homogeneous source and an automatic inferential paradigm linking
signal reflectance to land cover, the second one (GRUMP) is derived by a more abstract
inferential model requiring the signal recorded by the sensor together with other exter-
nal data sources as the census data. Of course, the probability of inconsistency in the
derived information layer is directly proportional to the amount of different sources
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* The “Global observatory of human settlement” is part of the institutional activity research of the EC
JRC Institute for Protection and Security of the Citizen Information Support for Effective and Rapid

External Action 2008 in collaboration with United Nations Habitat and Word Bank.

¥ Note, for example, the confusion between “urban” and bare soil and desert areas in the lower corners

of the sample.

# The GRUMP datasets may be accessed through National Aeronautics and Space Administration’s
Socioeconomic Data and Applications Center, operated by CIESIN, at http://beta.sedac.ciesin.colum-

bia.edu/gpw/.
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FIGURE 3.2 Nairobi city and the surrounding region of Kenya. Comparison between settle-
ments classified using automatic methodology and those available in satellite-derived infor-
mation layers at regional and global scales. From top left to bottom right: (a) original data
recorded by the panchromatic sensor of SPOT satellite (© SPOT IMAGE); (b) built-up index
extracted using image textural information; (c) “urban” class extracted from the GLC2000 land
cover; (d) “urban” area in the GRUMP database; (e) “urban areas” class of the AFRICOVER
land use/land cover; (f) spatial generalization of the built-up index to 100 meters grid.
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required as input in the inferential system, other than the amount of free parameters
controlling the recognition paradigm.

Figure 3.2(e) shows the same Nairobi area but as represented by the “urban areas”
class extracted from the AFRICOVER land cover database produced by visual photo-
interpretation. Figure 3.2(f) represents the same area with a spatial generalization of
the texture-derived built-up presence index to 100 m of grid cell. The spatial general-
ization is done by a simple local average statistic of textural information extracted at
the original sensor resolution.

If we compare Figures 3.2(c), 3.2(d), and 3.2(e), we can note how the human-
interpreted “urban” land cover (Figure 3.2(e)) can be more spatially precise than the
automatically generated satellite land cover. Sharper edges are observable between
the “urban” and “not urban” areas, and some small towns are also visible whereas
they are omitted in the automatic-generated satellite land cover. In fact, these differ-
ent representations are derived from satellite datasets having different spatial resolu-
tion — they range from hundreds of meters or kilometers of the satellite data used
for GLC2000 and GRUMP datasets, respectively, to the 30- or 20-m resolution of the
satellite data used for the AFRICOVER data set. However, no regional or global LU/
LC derived from 30- or 20-m resolution satellite data with automated methodology
and containing reliable information on the human settlement theme was available at
the time. This is also attributed to the fact that the standard operational methodol-
ogy for automatic extraction of information from satellite data, being based only on
analysis of spectral information, shows sufficient reliability only when using low
spatial resolution image data.

Furthermore, as in the previous example of CORINE LC (Figure 3.1), if we compare
the human-interpreted “urban” land cover product (Figure 3.2(e)) and the machine-
generated representation of the presence of built-up structures (Figure 3.2(f)), we can
observe the advantage of the latter, from the viewpoints of completeness and con-
sistency of the information provided. For example, as a result of the texture-based
automatic satellite data analysis, we can realize that a large part of the territory on
the north of Nairobi City is actually “covered” by human settlements that were mostly
ignored by the available sources derived from satellite data or reported with arbitrary
amendments.

Finally, it is important to note that the information about the presence of built-up
structures is easily scalable at different levels of spatial generalization. Figure 3.2(e) is
now reporting the density of built-up structures detected at the original sensor resolu-
tion (2.5 m) in grid cells of 100 m. Of course, the calculation of the same at 1 km or
any other cell size is straightforward. This, however, is not true independently from the
adopted classification scheme. It can be demonstrated that a more complex or abstract
land use or land cover classification scheme would be much more rigid and less easy to
scale to different generalization levels. In fact, there is an inverse relation between the
level of abstraction of the classification scheme and its scalability to different spatial
generalization levels starting from the generalization level used in the production pro-
cess. This relation will be discussed in the following paragraphs.

3.3.3 ABouUT SINGLE IMAGE STRUCTURE

37

With some simplification, we can define an image structure (also called region, seg-
ment, or object) as any collection of adjacent (or connected) image pixels sharing a
given explicit characteristic. The adjacency (or connectivity) constraint means that in
the basic notion of image structure, we cannot avoid to take into account the spatial

domain of the image, including the definition of a distance metric.

© 2009 by Taylor & Francis Group, LLC



38 Human Settlement: Experiences, Datasets and Prospects

In computer vision, and then in remote sensing, we usually refer to the process
of “image segmentation” as the process of extraction of these image structures from
the raw digital image data. Through the segmentation step, it is possible to formalize
structural information as a collection of individual image structures (regions) with
specific characteristics that can be measured as, for example, statistical distribution
of pixel values belonging to the same image structure (region), or area, shape, perim-
eter of the single image structure (region).

The literature about image segmentation is very important; a recent survey made
by Zhang et al. (2008) may give an idea of the available tools and the difficulty of
their objective and comparative evaluation. In this chapter, we focus on one spe-
cific family of techniques allowing image segmentation, and in particular we will
concentrate on the so-called image “mathematical morphology.” Mathematical mor-
phology is the name of a collection of operators based on set theory and defined on
an abstract structure known as an infinite lattice. These operators were first sys-
tematically examined by Matheron and Serra in the 1960s and are an extension of
Minkowski’s set theory (Serra 1982, 1986). Morphological operators include erosion,
dilation, opening, closing, rank filters (including median filters), residual (top hat)
transforms, and other derived transforms. These operations can be defined on binary
or gray-scale images in any number of dimensions (multispectral data). They can
also be defined with Euclidean (isotropic) or non-Euclidean (geodesic) distance met-
rics (Soille, 2004). The geodesic metric may allow us to introduce the so-called “by
reconstruction” morphological operators including the area-based connected opera-
tors that recently have been proposed in applications involving remotely sensed data
processing (Soille and Pesaresi, 2002).

According to Meyer and Beucher (1990), the standard approach to image seg-
mentation using mathematical morphology is based on the so-called watershed line
detection. Watershed segmentation was introduced in image analysis by Beucher and
Lantuéjoul (1979) and defined mathematically for the first time by both Meyer (1993)
and Najman and Schmitt (1993). Watershed extraction generally means the thinning
of a gradient image with a homotopic transformation. It also involves the detection of
basins as regions and crest lines as boundaries for these regions. For these reasons,
a watershed approach generally leads to finding the structures in an image based on
an edge detection strategy.

An alternative to the classical approach for morphological segmentation was intro-
duced by Pesaresi and Benediktsson (2001) and it is based in the so-called morpho-
logical profile (MP) and its discrete derivative (DMP). The MP is made by multiscale
simplification of the original image using geodesic or “by reconstruction” opening
and closing morphological filtering with increasing SE size. The DMP then records
for each point of the image the amount of contrast signal that is lost at each simpli-
fication (scale) step by opening and closing morphological transforms of increasing
size. The idea behind the method is that by looking at the maxima of the multiscale
DMP, we can understand for which scale (size) and type of contrast (positive or nega-
tive corresponding to opening or closing, respectively) the image structure has been
canceled by the morphological filter. Consequently, this information is recorded for
each point of the image as per-point specific “morphological characteristic” and the
image structures are successively defined as connected components of image points
(pixels) sharing the same morphological characteristics.
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The advantages of this alternative method of performing image morphological
segmentation can be summarized as follows: (1) possibility to handle textured areas,
with salient segments of 1-2 pixels impossible to process with edge-based approach,
or usually leading to severe oversegmentation effects; (2) fully multiscale approach
avoiding the necessity to define one scale parameter, but instead optimizing the
image structure recognition inside a given scale range; (3) possibility to handle, in a
mathematically consistent manner, a spatial hierarchy of image structures without
the necessity of defining their crisp boundaries. The drawbacks are instead mainly
related to the more relevant computation efforts that we need for calculation of the
multiscale DMP with respect to the traditional watershed segmentation with one
scale parameter.

With respect to other image multiscale decomposition techniques such as
Laplacian pyramids, Gabor filters, wavelets, and the like, the main advantage of
the multiscale DMP is that it allows multiscale image description without losing
detail of the edges of the structures. Because of the mathematical proprieties of
the morphological operators “by reconstruction,” the shape and the maximum
detail or resolution of the image structure borders are preserved at all the simpli-
fication scales, avoiding the blurring or shape noise effects of the other methods.

In recent years, the DMP concept has been successfully applied in a wide range of
computer vision problems; in remote sensing of human settlements, the main appli-
cations are related to building detection and change detection in built-up structures
(a specific review in the next paragraph) and road detection (Zhu et al., 2005) using
latest-generation satellite data.

3.3.3.1 BuiLbING RECOGNITION

If we subdivide the elements of the built-up patterns visible in VHR satellite data into
three classes as (1) built-up structures, (2) road or other movement infrastructures,
and (3) open spaces, it is intuitive to understand that the buildings always belong to
the key information needed for settlement analysis.

The automatic detection of buildings using single date optical image data from
aerial surveys has been extensively explored by Irvin and McKeown (1989), Shufelt
and McKeown (1993), Jaynes et al. (1994), Lin et al. (1995), Shufelt (1999), and
Haverkamp (2004). Most approaches are based on a syntactic edge-driven approach,
which consists of line detection, parallelogram structure hypotheses extraction, and
building polygon verification using knowledge such as geometric structure, shadow,
and other information. Methods using single date data are hardly applicable to the
available satellite data for two main reasons: (1) they are designed for data input as
aerial photograph, with the exception of Haverkamp (2004), with a spatial detail
of about 0.2 ms, which is a much finer resolution than that available from current
VHR satellite data (1.0 or 0.6 m); and (2) they are built on simple assumptions
that fail in many relevant cases. For example, one important assumption consid-
ers the building as an isolated rectangular region clearly identifiable on the image.
This assumption — valid in most of North America — is instead violated by many
relevant settlement patterns including formal cities (e.g., medieval cities both in
Europe and North Africa) and informal settlements (slums in Asia, Africa, South
America) that are typically an assemblage of adjacent buildings. Similarly, informal
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settlements arising in the poorest residential areas of rapidly expanding megacities
appear more as “‘snakes” of continuous built-up structures along roads or cluster
around courtyards.

Attempts to overcome these problems can be related to multisensor image fusion
techniques (Gamba et al., 2005), or if we miss multisensor or ancillary data input
by creating multiscale representation of the image structures using the so-called
derivative of the MP or DMP (Pesaresi and Benediktsson, 2001; Benediktsson
et al., 2003). In the latter case, the recognition system is based in less rigid geo-
metrical constraints than in the syntactic edge-driven paradigm, and it has been
tested with some success using spatial resolution currently available with satellite
imagery. The best results in building detection are obtained when optical stereo
images are available as well as elevation data (Oriot et al., 1998; Hanson et al.,
1997). Unfortunately, image stereo pairs are quite expensive and rarely available in
real applicative scenarios.

Pesaresi and Kanellopoulos (1999) first introduced the use of DMP morphologi-
cally segmented image for classification using a segment-based or object-based strat-
egy. The approach used a classifier using neural network architecture with different
options as input including spectral, morphological, and shape-derived features.
The authors showed the superior performance of morphological features. In turn,
Benediktsson et al. (2003) directly used the DMP as input of a neural network clas-
sifier, skipping the image segmentation step, and demonstrating the relevance of this
approach in automatic recognition of an urban scene using Ikonos panchromatic data.
Chanussot et al. (2006) used a fuzzy interpretation of the DMP extracted from Ikonos
panchromatic images. Plaza et al. (2004) applied morphological transformations on
hyperspectral datasets to discriminate between subtle different ground covers in the
classification between agricultural and urban areas.

Jin and Davis (2005) demonstrated that structural (including DMP), contextual,
and spectral image information can be exploited for automatic building recognition
using VHR satellite. By direct comparison, Pagot and Pesaresi (2008) demonstrated
that the multitemporal DMP extracted from satellite data was superior to the multi-
spectral data for discrimination of changes on built-up structures. The system was
based on supervised classification using a neural network approach.

ExaMPLE: KIBERIA SLUM

The very high spatial resolution (VHR) satellite imagery provides information on
built-up elements that include buildings, roads, and the open spaces. Figure 3.3 shows
an example of automatic analysis of settlement built-up components using automatic
image understanding approach.

In the example, we show an area of about 250 x 250 m in the Kibera slum of
Nairobi. The data were recorded by the QuickBird satellite using the panchromatic
sensor with a resolution of 0.6 m (Figure 3.3(a)). Figure 3.3(b) shows a feature belong-
ing to one layer of the so-called DMP. It is easy to note the correlation between the
image feature extracted and the phenomenon at the origin that are the shadows cast
by built-up structures. The idea behind the multicriteria approach is that simple image
features such as this one can contribute to the automatic understanding of the presence
of the entity “building” in the VHR remotely sensed data.
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FIGURE 3.3 Kibera settlement in Nairobi, Kenya. Extraction of information related the
built-up structures using the mathematical morphology approach: (a) the QuickBird (© DIGI-
TAL GLOBE) satellite at a 0.6m spatial resolution covering an area of 250 x 250 meters; (b) the
built-up “shadows” from residual of closing by reconstruction; from (c) to (f) closing deriva-
tives of the morphological profile (DMP) for increasing scale; from (g) to (j) opening deriva-
tives of the morphological profile for increasing scale; (k) segmentation of the image by the
“morphological characteristic” or maximum of the DMP; (1) example of automatic enumeration
of built-up structures (centroid as black dot in the image) using morphological segmentation.

Figures 3.3(c)—(j) represent four DMP levels extracted using four flat SEs with increas-
ing size. Image decomposition by the DMP profile is able to discriminate different struc-
tures present in the image according to the size (increasing from left to right) and to the
type of contrast with respect to the adjacent image structures. Figures 3.3(c)—(f) report on
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the contrast signal generated by structures darker than the adjacent portion (concavity of
the gray level function), whereas Figure 3.3(g)—(j) report on the contrast signal generated
by structures brighter than the adjacent (convexity of the gray level function).

The authors feel that the DMP’s most important property is its ability to capture
image structural information without the necessity of passing through an image seg-
mentation step. In fact, DMP can handle a hierarchy of multiscale image structures
having fuzzy spatial definition. In this manner, it can reduce the problem of border
error propagation between the scales. Consequently, it improves the robustness of the
recognition system. Figure 3.3(k) shows an example of image segmentation based on
the morphological characteristics recorded by the multiscale DMP, whereas Figure 3.31
shows the output of an algorithm used for automatic enumeration of the built-up struc-
tures in complex settlement patterns such as the one observed in slum areas. The algo-
rithm is automatically inferring the optimal spatial filter to apply to each point of the
input image on the basis of the signal recorded in the multiscale DMP decomposition.

EXAMPLE: MULTISCALE IMAGE STRUCTURES

Figure 3.4 compares radiometric and morphological structural information for the
characterization of settlement patterns. Three settlement patterns for Nairobi are taken
as examples: Kibera slum (first row), business city center (second row), and a struc-
tured residential area (third row). The first column shows the signal as detected by
the satellite sensor (QuickBird sensor, panchromatic mode, 0.6 m spatial resolution).
The second column shows the radiometric enhancement through histogram stretching
of a robust feature (“shadows”). The stretching was done on low radiometric values
(linear histogram stretching from 10% to 30% of saturation). The third column shows
the size spectrum obtained by decomposition of the “shadows” by closing DMP based
on gray-scale morphological transformation with increasing SE. The fourth column
shows the anisotropic analysis of the “shadows.” This is done by calculating the den-
sity of gradient lines for different directions, using morphological opening transforms
with a linear rotating SE.

The histogram on the bottom of the figure shows the radiometric frequency his-
tograms for the three settlement patterns. Note that the three subsamples are clearly
overlapping: from the point of view of the recorded radiometric signal they are hardly
separable. Note also the radiometric cluster appearing as a clear lowest maximum
(mode) in the frequency histogram in two of the subsamples. This is clearly associated
to the shadowed areas that are some of the most radiometrically evident image struc-
tures detectable using VHR data input.

Shadows arerelated to the volume and height of the built-up structures. Consequently,
the size spectrum of the “shadows” detected by the DMP can discriminate the settle-
ment patterns; for example, the evident maxima on the slum shadow DMP are placed
at about 3 m in size, whereas the residential area shows an evident maximum at about
8 m. The DMP also captures the heterogeneity of the settlement pattern; this can be
appreciated by comparing DMP extracted from the second pattern and the other two.
The first and third patterns have only one evident maximum corresponding to built-up
structures having homogenous size. The DMP extracted from the second pattern is
instead showing heterogeneity of built-up structures translated on the several peaks as
detected in the DMP.

Finally, the anisotropic analysis may provide an insight into the building process
of the settlement. Usually, more ordered patterns are the result of an urban plan and
of an authority that implements it. Spontaneous or “informal” settlement patterns are
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FIGURE 3.4 The figure shows three settlement patterns (rows 1 to 3) over the city of Nairobi
as seen from Quickbird imagery (© DigitalGlobe®). Column 1 shows the original images,
column 2 the radiometrically enhanced images, column 3 the frequency of image structures
at different scales as detected by the DMP based on gray scale morphological transformation,
and column 4 the anisotropic analysis of shadows. The bottom histogram shows the radiomet-
ric frequencies related to the original images.

more chaotic in nature. The “orderliness” of built-up patterns can thus be measured
through the analysis of maxima and the minima DMP measurements as shown in the
fourth column.

Again, it is worth noting that the above-mentioned morphological measurements are
carried out directly on gray-scale input images. Eventual application to multispectral
imageries can be also implemented. The traditional step of image segmentation needed
for recognition of crisp mutually exclusive image regions or “objects” is not needed in
the proposed approach. According to our experience, this dramatically increases the
robustness of the recognition system.
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3.4 STRUCTURING THE INFORMATION ON SETTLEMENTS
3.4.1 StanDARD LU/LC PArRADIGM

The most widely used conceptual paradigm in satellite remote sensing data anal-
ysis is to convert spectral information contained in the image in “land cover”
classes. It was the pioneering work of Anderson (1971, 1972) that introduced a
classification scheme for medium resolution satellite imagery. A classification
based on Landsat TM has been conducted for the United States (Vogelman et
al., 1998) as well as for Europe (CORINE, 1994) and Africa (Aficover). Similar
land cover classification schemes have been likewise developed for use of coarser
resolution satellite imagery to be used in generating global land cover products
(IGBP 1992, GLC2000).

Land cover mapping assumes that the surface of the Earth can be grouped into
measurable classes of land cover based on the physical properties of the Earth’s sur-
face (Comber et al., 2005). Land cover classes include forest, grassland, bare land,
water bodies, to mention the most important.

Land cover is often used interchangeably with “land use” — the use of the
land — creating some confusion and methodological problems (Fisher et al., 2005)
that may have originated from the ambiguity of the definition of land use and land
cover proposed by Anderson et al. (1976). Converting remote sensing—derived land
cover information — those produced by remote sensing specialists — into land use
information needed by planners and decision makers has dominated the method-
ological debate of remote sensing practitioners.

The ideal geographic entity to be mapped by the standard LU/LC paradigm
should be compliant with the following characteristics:

1. It is a homogenous surface (reflecting similar spectral information inside
the same surface).

2. It has given geometrical characteristics such as: (a) a size considerably
greater than the image pixel size (the satellite image spatial resolution) and
(b) a simple shape reducing the number of border pixels with respect to the
number of pixels belonging to the entity itself.

3. Logically, it is mutually exclusive with respect to all the other classes.

4. It has a self-evident mode of use that can be deterministically deducted
from its physical characteristics.

A typical example of a good entity to be mapped in this paradigm is a modern
agricultural field such as corn or soya bean. From the physical point of view, it is
typically flat (consequently illuminated in the same way), large with respect to pixel
size, has a simple shape, and often reflects homogeneous spectral information. It is
mutually exclusive with respect to other classes (if it is corn, it cannot be soya bean)
and the deterministic deduction of the land use from the surface type or land cover
is working with reasonable results. The physical entity detected as a surface of corn
or soya bean is mostly likely “cultivated as” corn or soya bean. It would be difficult
or absurd to imagine a different use for the same physical entity (e.g., recreational
field for soya bean).
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3.4.1.1 Internal Consistency Aspects

Unfortunately, mapping of settlements is not easily accommodated within the LU/
LC standard paradigm. All the above-mentioned characteristics needed for effective
mapping of geographic entities inside the LU/LC paradigm are violated in different
degrees in the case of geographic entities related to human settlements.

As noted earlier in this paper, the specificity of the settlement theme from the
physical characteristics viewpoint can be summarized as internal spatial heterogene-
ity and mimetism with the surrounding areas. In fact, settlements are composed of a
large number of physical elements that include vegetation, concrete, stone clay tiles
from roofs or straw, which may also be present in other cover classes not belonging
to the settlement as natural or agricultural surfaces. Furthermore, typically these
different surfaces may have a spatial frequency of change of a few meters. For these
reasons, settlements usually violate characteristics (1) and (2) (see list above) relating
to the standard LU/LC paradigm. Assuming built-up elements having a size on the
order of 10 m, all traditional satellite data up to a resolution of 10 m are, by defi-
nition, reporting only mixed-pixel information on surfaces covered by settlement.
Because of the heterogeneity of settlement materials, including also spectral vari-
ability induced by shadows cast by buildings, this mixture cannot be modeled as a
simple linear mix between two surfaces.

Assuming a geographic entity with a size of 500 x 500 m, which is, for example,
the minimal mapping unit of 25 ha in the CORINE LC product, the percentage of
mixed surface (pixels) over the total is at least of 24% with 30 m of sensor spatial
resolution. Assuming a typical minimal built-up element in a settlement, having a
size of 10 x 10 m, we need at least 0.5 m resolution in order to have a comparable
percentage of mixed pixels (at least 20% in this case). Of course, in reality building’s
roofs are usually not homogenous because different side slopes are differently illu-
minated, making an increased number of internal mixed pixels. With 2.4 m resolu-
tion, which is the maximum rate possible at the time with a multispectral sensor (the
QuickBird satellite), more than 90% of the pixels covering the built-up structure are
mixed-border pixels between unknown different materials differently illuminated
and partially shadowed.

These simple numbers explain from the physical viewpoint why the standard
LU/LC paradigm may be hardly applicable in mapping settlements using satellite
remotely sensed data.

Other considerations, however, may make the effort even more difficult. Standard
LU/LC classes are mutually exclusive, whereas in general human settlements show
stratification of different uses and functions during different times, but also in the same
time and place. Although some settlement patterns following a functionalist design
segregate different functions in different areas (e.g., residential from commercial
areas), many other contemporary settlement patterns show important levels of mixing
and stratification of functions in the same place. These patterns may be inherited from
earlier historical periods (e.g., medieval centers in many cities of Europe and North
Africa), but also show modalities of evolution that are typical of the present.

In developed countries, this is also evident — for example, “commercial stripes”
where commercial and residential functions are mixed, or some specialized produc-
tive districts where we mix residential and productive surfaces, or scattered rural-
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urban areas where scattered agricultural fields are mixed together with residential
dwellings. Moreover, because of the increased mechanization of agricultural activi-
ties, “rural areas” in several developed countries are mostly inhabited by people
engaged in activities not related to agricultural production; in this manner, the typical
rural-urban dichotomy that is assumed as self-evident by the LU/LC paradigm is los-
ing explanatory capacity. “Rural areas” may in reality appear inhabited by a popula-
tion engaged in “urban” activities and/or leading globalized “urban” styles of life.

In developing countries, the mixing of functions is the rule in many important
situations. For example, in several slum or informal settlement areas in Asia, it is
the rule to have residential, artisanal productive, and commercial functions in the
same place, and in numerous cities in Africa we may observe large areas where sub-
sistence agricultural activity is mixed with residential and industrial production and
residential function, being part of the same integrated economic model.

These examples show that “mutual exclusivity” assumed by the standard LU/LC
paradigm is not universally applicable (it works well in cases where the descrip-
tion of settlements is without risk of excessive reductionism). These exceptions
mostly apply in western countries, where functional spatial segregation has been
historically applied as rationalist or functionalist planning design strategy. In sev-
eral other relevant cases at the global level, the implicit risk of applying the LU/LC
paradigm is to lose some of the most relevant information needed in the settlement
pattern description.

Finally, it should also be mentioned that the deterministic model linking physi-
cal appearance, or land cover, with land use has insufficient reliability in describing
human settlement patterns. To illustrate our point, we can cite as an example that a
rectangular element detected in the satellite image, showing the signal characteristic
of a concrete material, can be linked to a variety of different functions: it could be a
parking lot, the roof of a swimming pool, the roof of a shopping mall, a museum, an
industrial installation, or an apartment block. This is only an example, but anybody
who has had an experience in analyzing settlements using remotely sensed image
data can agree that often only a direct survey or the collection of additional infor-
mation coming from external sources can contribute to fill the gap between land
cover and land use in the built-up environment. The quantity of external information
needed is inversely proportional to the reliability of the deterministic model linking
the image-detected land cover to the land use classification.

3.4.1.2 External Adequacy Aspects

The arguments mentioned above show some of the difficulties we have had to face
in applying the standard LU/LC paradigm to the description of settlements. It may
be noted that these drawbacks can be regarded as both physical (and then opera-
tional) and logical inconsistencies between the information to be detected in the
image data and the form of representation we use for handling the information itself.
Thus, we can say that they are inconsistencies “internal” to the settlement theme and
its description.

But there is also another aspect to be considered that we could define as more
“external”; this aspect is related to the use of the information extracted from the
image data. To explain this concept, we discuss about the suitability or adequacy of
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the information structured inside the LU/LC paradigm to be used by decision mak-
ers interested in analysis of settlements.

As noted above, part of the specificity of the settlement theme stems from the
fact that the information on settlements is immersed inside a complex context of
use. The application field is made complex by multiple stratifications of interests and
functions that produce a remarkable multiplicity of viewpoints, equally valid but not
coincident, of the settlement “reality.”

Let us take a very basic LU/LC notion in which “urban area” is contrasted to
“agricultural area,” “rural area,” or “natural area.” What is the exact definition of
“urban area”? This, of course, is a rhetorical question because many alternative
definitions may be found — based on a given spatial density of physical structures
as buildings and roads, or density of functions (typically, services and industry),
or population density, or market labor specificity, or even the presence of specific
cultural heritage or religious sites, or any other arbitrary definition from a traditional
perspective. Finally, the definition can even be based on a given specific mix of the
above criteria. All these criteria, of course, also involve the application of one or
more thresholds in order to define what “urban area” is and what it is not.

It is important to understand that all definitions involving criteria and thresholds
may have a specific niche of validity, referring to a specific legitimate ambit of activ-
ity of a specific social actor or decision maker. Consequently, the question “What is
the correct (or true, valid for all the applications) definition of urban area?” is most
probably a wrong one to ask, because it is not solvable and will not likely lead to a
useful solution.

It is also worth noting that because of the logical structure of the standard LU/LC
classification scheme, the moment we reduce the specific constellation of criteria and
thresholds to a given LU/LC class, we lose the primary information. Consequently, in
case it is needed to define the same class with other criteria or even slightly different
thresholds, this becomes impossible because this information is no longer found in the
classification scheme. We can describe this situation as the untranslatability of any given
standard LU/LC classification scheme into different semantic user requirements.

The intrinsic complexity of the application domain requires information that is
scalable and adaptable to a wide range of possible uses and definitions, different
but equally valid, whereas the standard classification scheme requires a unanimous
definition of abstract classes that are, by definition, static and untranslatable to other
semantic user requirements.

The above situation easily leads to the rapid obsolescence of LU/LC databases
and to the proliferation of slightly different but not reducible LU/LC databases over
the same areas. This is because the same user may evolve in the detailed definition of
the criteria and thresholds. This is also because slightly different users cannot exploit
the information contained in the same LU/LC databases since it involves abstract
definitions and assumptions that are rigidly defined and usually do not exactly match
with their specific needs.

This entire situation can be summarized by establishing an inverse relation
between the level of abstraction of any given classification scheme and its adaptabil-
ity (robustness) to a complex application domain. This is because the more abstract
the classification scheme is, the more numerous are the criteria and thresholds
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needed for a complete definition, and consequently the more difficult it is to obtain
a complete agreement between the different users for all of them. From this point
of view, we can say that the level of abstraction in the classification scheme can be
directly linked to its fragility.

3.4.2 MODULAR ABSTRACTION

One important point in our argumentation is that in the case of complex environ-
ment, a simple strategy is often the best one. As we have noted earlier, the specificity
of the settlement theme and, in particular, the physical characteristics of the built-up
environment and the complexity of the application field, make it difficult to recog-
nize and represent this information using traditional conceptual tools.

Let us consider the notion of “built-up structure” that can be defined, for example,
as a physical structure with walls and roof, having a minimal size expressed in height
and plant surface (e.g., at least one floor or 3 m height, 5 x 5 m of surface in plant),
and other similar characteristics. The “built-up pattern” can be consequently defined
as a specific composition of elements (buildings, roads, open spaces) measured in a
local domain (area) having, for example, a minimal number of built-up structures
with a minimal distance in between.

Also, if these notions contain a certain level of abstraction and if alternative defi-
nitions can be found,* it is interesting to note that this notion implicates fewer criteria
and thresholds, and therefore can be described as semantically simpler or less abstract
than the one related to “urban area” discussed in the preceding section (3.4.1.2). Less
abstraction means a greater number of slightly different users who may agree on the
meaning of the information, and consequently, an increased robustness of the clas-
sification scheme and possibility of sharing the related information.

Given the direct relation between fragility of the classification scheme and its
abstraction, one way of improving the robustness of the classification scheme could
be to revise the standard LU/LC paradigm in a way that more flexibility can be
obtained. In particular, we can imagine a classification scheme that does not directly
link the uninterpreted image data to the final land use classes, but instead does the
same more gradually, by intermediate steps of increasing abstraction of the semantic
categories involved.

For example, we can establish a classification scheme sliced in three levels with
increasing semantic abstraction: basic or <level 1>, where we distinguish only
between built-up and not built-up structures or patterns; intermediate or <level
2>, where we describe the built-up structures or patterns using spectral or spatial
(structural) information extracted from imageries; and advanced or <level 3>,
where we distinguish between the different modes of use of built-up structures and
patterns.

Thus, for example, when a built-up pattern is recognized at <level 1> against a
not built-up background, then the compactness, density, and average size of built-up
structures is measured at <level 2> together with the presence of vegetated surfaces;

* For example, different constraints on the definition of durable materials for walls and roofs may
exclude some slum areas and refugee camps from the “settlement notion.”
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then at <level 3> these measurements are associated to a specific class of built-up
patterns. In other words, at <level 1> we detect the built-up pattern, at <level 2> we
describe it for example as a “compact pattern of small buildings with no vegetation,”
and at <level 3> we associate this to the category of “slum,” taking into consideration
that we are in a given geographic context of Central Africa. Similar considerations,
but at another scale, can be shown relating to the classification of single built-up
structures.

In contrast to the standard LU/LC paradigm, in this case we do not try to pass
directly from <level 0> of the not-interpreted image data to <level 3> of the “slum”
label. As an alternative, we allow the user to choose the right level of abstraction and
generality of the classification scheme.

The proposed abstraction modularity of the classification scheme may allow us to
understand better the role of automatic recognition procedures and to optimize their
tuning. By increasing the semantic level, we may observe a trade-off between auto-
matic and manual recognition capabilities. Although automatic image recognition
procedures may play a relevant role with basic semantics such as the one at <level
1>, at <level 2> human experts have to define the set of relevant image measurements
that need to be taken into account, and the advanced semantics of <level 3> can only
be addressed on a case-to-case basis by human interpreters taking into account a
priori knowledge that is site- and application-specific.

The proposed abstraction modularity has an effect on the robustness of the
classification scheme and the possibility of sharing information across specific
applications and geographic sites. Whereas <level 1> is the most adaptable, <level
2> is partially sharable because eventually it lacks some measurements not included
in the proposed set, and <level 3> is only sharable inside the same user requirements
and semantics. Often, <level 3> is also site-dependent; for example, the label “slum”
or “medieval city center” can be deducted from the same set of measurements if
we are dealing with Central Africa or in Europe, respectively. Similarly, there is a
relation between abstraction level and possibility of generalizing the information
extracted at different scales.

Finally, we can expect that a classification scheme allowing abstraction modular-
ity will be more robust against slight changes in user semantics. Instead of a total
collapse in the case of mismatch at the high-level semantics as what happens with the
LU/LC standard paradigm, it may accommodate different degrees of mismatching
for different abstraction levels, thereby remaining stable at even lower abstraction
levels.

3.4.3 MurticriTERIA APPROACH, LOGICS

As shown in earlier sections, structural image information (texture, morphology)
is important for the discrimination of different settlement patterns and for the
discrimination of settlement components (buildings, roads, open spaces); often,
structural information is the primary criterion for a robust discrimination, and is
sometimes more important than radiometric criteria.

Of course, structural image information alone cannot solve all the recognition
and analysis cases. For example, some areas covered by scattered trees may generate
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a texture signal similar to the one generated by built-up structures, if they have simi-
lar spatial patterns (average distance and size of structures). Similar considerations
may be found concerning areas that contain isolated small rocks scattered with a
contrasted background such as vegetation background. In such cases, in order to
improve the automatic recognition quality, the merging of spectral and structural
information could be necessary.

In general, it is a very rare and fortunate occurrence to find only one criterion
extracted from the image data that is able to solve the discrimination problem. This
is often solved in a robust manner only by using a multicriteria approach taking into
consideration a variety of aspects of the same target.

Moreover, it is very rare for operators to find a stable hard threshold in the deci-
sional space made by the criteria we use for discriminating different targets in the
image. Fuzzy logic applied to the multicriteria approach often offers a more stable
and modular solution than more complicated analytical approaches. The approach
chosen here for the automatic recognition of built-up structures can be defined within
a multicriteria methodology as that reported by Eastman et al. (1995), with the adop-
tion of fuzzy logic for the formalization of criteria as described by Yaochu (2003)
and Amo et al. (2004). The reason behind the choice is linked to the assumption
that a complex problem such as the characterization of built-up structures cannot
be solved satisfactorily if addressed by using a too reductive approach, taking into
account just one aspect of the problem description and formalization such as spec-
tral, structural, or edge-syntactic chains. The proposed vision is that the complex
problems of recognition can be solved with a sufficient degree of robustness and
abstraction only if addressed by a multiplicity of viewpoints (Brans, 2002), and the
adoption of a fuzzy logic approach also in the sense of improving the link between
the verbal description of the recognition paradigm and their formalization, as a tool
supporting the modularity and robustness of the overall system.

Examples of the application of the multicriteria approach in remote sensing
applications can be found in order to improve the accuracy of multisource forest
inventory (Halme and Tomppo, 2001) or within an integrated methodology support-
ing environmental risk assessment (Chen et al., 2001). Pesaresi et al. (2007) used a
fuzzy multicriteria approach for the rapid damage assessment of built-up structures
using VHR satellite data. The criteria implemented in the inferential model included
textural, morphological, and spectral information. Pesaresi and Pagot (2007) used
multitemporal DMP for the study of post-conflict reconstruction in African settle-
ments, using two VHR satellite images taken just after the conflict and a few years
later. This approach allowed them to discriminate and to automatically enumerate
built-up structures that were destroyed and those that were rebuilt. The discrimina-
tion was made possible through the establishment of a knowledge-based system
formalized in a fuzzy multicriteria frame. Pesaresi and Pagot (2008) demonstrated
the superiority of soft spatial generalization of the image criteria compared to the
standard object-based image recognition strategy assuming crisp mutually exclu-
sive image regions.

Finally, in this context, we think it interesting to mention that a recent research
area is studying the formal relations between the description of the image struc-
tural information via mathematical morphology (MM) and the formalization of
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inferential systems based on nondichotomous logic. Bloch (2002) introduced the use
of MM for quantitative, semiquantitative, and symbolic setting of spatial relation-
ships between image structures, and later proposed the use of MM for the formaliza-
tion of belief functions with application to image fusion under imprecision (Bloch,
2008). Hudelot et al. (2008) proposed a fuzzy spatial relation ontology for image
interpretation based on MM operators. Meanwhile, Moraes et al. (2002) proposed
a fuzzy expert system architecture for image classification using MM operators,
and Li (2007) demonstrated the possibility of hierarchical land cover information
retrieval in object-oriented remote sensing image databases with native queries also
involving MM operators.

3.4.4 ToroGRrAPHIC MAP As PossiBLE NEw PARADIGM

Figure 3.5 shows three different modalities of representation of the same territory,
located north of Nairobi, Kenya. Figure 3.5(a) is a subset extract from the Africover
data set, whereas Figure 3.5(b) is a color composition of three criteria extracted by an
automatic image processing procedure. The three criteria are (1) presence of built-up
pattern recognized using the textural analysis derived by Pesaresi et al. (2008) from
panchromatic data, (2) presence of vegetation recognized using the normalized dif-
ference vegetation index (NDVI) calculated on multispectral data, and (3) presence
of built-up structures calculated from a morphological residual filtering based on
connected operators on panchromatic data (area opening top-hat). The used data
input was recorded by the Spot 5 satellite platform. The criteria are extracted by
a fully automatic knowledge-based processing flow with any free parameter to be
tuned manually. They are then standardized by a simple linear rescaling function
based on global histogram statistics (min, max linear histogram stretching, with 1%
saturation).

In Figure 3.5(a), the classified “urban areas” are shown in red, whereas in
Figure 3.5(b) built-up structures in areas with typical built-up pattern are presented
in violet (first and third criteria on), green areas are vegetated, and white areas rep-
resent bare soil not built-up.

By comparing Figures 3.5(a) and 3.5(b), we may make the same observations
described at the beginning of this paper about the consistency and accuracy of the
representation of settlements in the two approaches: one linking directly image
data to LU/LC classes, and the other linking image data to a classification scheme
allowing modular abstraction. In this case, we represent the first semantic level of
the classification scheme, containing the minimum possible of abstraction: the rec-
ognition of the basic ontology that in this case is composed by built-up structures
and vegetation. Of course, starting from this basic level, several other alternative
generalizations may be set, for example, defining different thresholds on the local
density of built-up structures delineating alternative notions of “settlement” that are
functional for selected users. Because of the abstraction modularity of the classifica-
tion scheme, the information collected at the basic semantic level may be shared also
across slightly different applications fields.

Figure 3.5(c) shows the same portion of territory as represented by a standard
topographic mapping approach at 1:50,000 scale (© IGN). Figures 3.5(a) and 3.5(c)
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(@)

FIGURE 3.5 (See color insert following page 324.) Settlements north of Nairobi, Kenya.
Three examples of landscape representations: (a) land cover map produced in the Africover
project based on Landsat 5 imagery; (b) built-up index map based on SPOT 5 imagery.
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4 Kilometers
]

FIGURE 3.5 (Continued) (c) 1: 50.000 scale topographic map.

are abstract representations of the geographic reality, referring to the LU/LC and
the topographic model, respectively, whereas Figure 3.5(b) represents a first level of
abstraction extracted from the signal recorded by the satellite sensor. In the frame of
the arguments presented in this chapter, it is worth observing the degree of similarity
between the two mapping paradigms (the LU/LC and the topographic map) from one
side and the satellite-derived information from the other side. In particular, concern-
ing the representation of the settlement that is the focus of this paper, we may intui-
tively remark that the satellite-derived information is much closer to the information
provided by the topographic map representation than to the LU/LC model. Anybody
trying to measure the accuracy of the built-up structures extracted from satellite
data will be much more satisfied by matching Figure 3.5(b) with Figure 3.5(c), than
Figure 3.5(b) with Figure 3.5(a).

This homeomorphism between the structure of the satellite-derived information
and the topographic map paradigm is important and probably includes part of the
solution for finding a more effective method of remote sensing of human settlements
using latest-generation satellite sensors. In particular, this alternative paradigm can
contribute to define a classification schema, where not only areas but also single
structures (or entities, represented as lines or points) may be represented, and where
the different entities do not necessarily have to be mutually exclusive as in the LU/
LC standard paradigm. The formal characterization of data models allowing topo-
graphic map representation has a long history and may be unnoticed by remote sens-
ing experts (Peuquet, 1984), but still manage to produce important developments
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toward the definition of more comprehensive classification models, as argued by
Forrest (1999).

3.5 CONCLUSIONS

The aim of this chapter is to show that remote sensing data collected by latest-
generation sensors can potentially provide information on human settlements with
unprecedented detail. Despite this, disciplines such as urban and regional planning,
design and development, but also more sectorial activities related to risk assessment
or damage and reconstruction assessment are still experiencing difficulties in using
satellite-derived information layers.

This paper backs up the theory that a really effective remote sensing of human
settlements needs the harmonic development of three basic areas: remote sensor
technology; image information extraction methodology; and conceptual tools able to
handle the extracted information, say the classification scheme.

Progress made on spatial resolution of the sensor technology alone is not sufficient.
If we apply traditional information extraction methodologies based only on spectral
image information, we obtain results that are quite suboptimal with respect to the
potentialities of satellite data handled. We argue that exploitation of image structural
information may dramatically improve the accuracy of detection and discrimination
of built-up structures and specific built-up patterns from latest-generation satellite
data. In particular, examples on the use of textural and morphological image infor-
mation are provided.

Still, even if we can use more advanced image information extraction method-
ologies the problem remains on the adopted classification scheme. The extracted
information on human settlements using latest-generation satellite data may be
closer to the physical and geographic reality, but the eventual matching with a stan-
dard classification scheme will continue to frustrate accuracy expectations. In this
context, we argue for the necessity of modifying the standard LU/LC classification
scheme and working on a new one that is capable of handling both single struc-
tures (geographic entities) and mutually exclusive homogenous areas. Moreover, it
is argued that a more flexible classification scheme, which allows for modularity of
the abstraction levels of the classes, can contribute to improve the robustness of the
automatic recognition and classification against the complexity of the application
domain.
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4.1 INTRODUCTION

Urban areas are characterized by diversity. Remote sensing provides an efficient way
to quantify some aspects of this diversity. In many settings, diversity of land cover
may provide a basis for characterizing the urban environment. Similarly, the diver-
sity of urban land cover influences mass and energy fluxes through the urban envi-
ronment — with direct consequences for the inhabitants. For both of these reasons,
it is necessary to understand both the functional diversity of urban land cover and
the resulting spectral diversity that is detected by remote sensors. Characterization
of spectral properties is essential to remote sensing of any type of land cover, but is
especially important in urban environments because the nature of the diversity itself
contains valuable information about the structure and function of the land cover
within the urban mosaic.

Two of the primary applications of remote sensing to the study of the urban envi-
ronment are mapping its spatial structure and monitoring its temporal changes. Since
at least the early 1970s, visible and infrared (IR) optical satellite imagery has been
used to map urban areas and monitor their changes. However, attempts to map urban
areas using traditional thematic classification algorithms have met with very limited
success. This is primarily a result of the spectral diversity of the urban environment
and the fact that this diversity violates the cardinal assumption of spectral homoge-
neity upon which most classification algorithms are based. This further illustrates
why mapping and monitoring urban areas with optical sensors requires knowledge
of the variety of land cover spectra that occur within the urban mosaic. In some
cases, the mapping objective may be to define the urban area on the basis of its land
cover. In other cases, the objective may be to map specific components within the
mosaic. In either case, it is necessary to consider the scale and diversity of compo-
nents within the urban area.

The urban mosaic can be represented, and mapped, in terms of a wide variety of
characteristics — both physical and nonphysical. Remote sensing measures physical
properties. The most abundant type of remotely sensed observations is the passive opti-
cal measurement of reflected sunlight at visible and IR wavelengths (defined below).
The focus of this chapter is on the physical properties that can be derived from mea-
surements of reflected sunlight and the wide variety of compositional, structural, and
functional characteristics that can be inferred from these physical properties. In this
sense, optical remote sensing is analogous to the biophysical phenomenon of vision,
and the visible and IR signals detected by the sensor are analogous to color. Color
is generally thought of in terms of the sensations it induces in the human eye—brain
system but in this chapter, the word color is used more loosely to refer to the visible
and IR characteristics of reflected sunlight as measured by sensors. Variations in the
color of reflected light convey information about the objects reflecting it. In the current
discussion, the word color will be used to include analogous processes occurring in the
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near-infrared (NIR) through shortwave infrared (SWIR) regions of the electromag-
netic spectrum. The behavior of light in the visible and IR regions of the spectrum can
be described effectively by the physics of reflection and absorption in its interaction
with matter. The intention of this unconventional usage of color is not to redefine the
word but to provide an analog to a familiar, and related, biophysical process. Although
this usage is introduced for the benefit of readers not versed in the terminology used in
spectroscopy and remote sensing, the analogy is appropriate because the reflection and
absorption of light at different visible wavelengths is related to the material properties
responsible for what we perceive as color. An excellent overview of these reflection
and absorption processes is given by Clark (1999). A comprehensive treatment of the
biophysical phenomenon of color is given by Shevell (2003).

4.1.1 WHy CoLoR Is IMPORTANT

Color is important because it is one of our primary sources of information on the
world around us. In terms of mapping and monitoring urban environments, color
is of particular importance because it has the potential to provide information that
would be difficult, or impossible, to obtain otherwise. Specifically, color allows us
to map and monitor the urban environment in terms of its physical properties and
the processes that influence, or are influenced by, those properties. At present, this
potential is largely untapped. However, recent scientific and technological progress
has provided a wealth of information on the urban environment and the processes
that shape it.

The distinction between visible and IR radiation (light) is based on the sensitivity
limits of the human eye—brain system. Other organisms have eye—brain systems with
different spectral sensitivities extending into both IR (longer) and ultraviolet (shorter)
wavelengths. Our eye—brain system presumably evolved to detect the visible wave-
lengths (~400 to 700 nm) because the Sun emits most of its energy in this part of the
spectrum. However, the NIR (700-1000 nm) and SWIR (1000-2500 nm) IR wave-
lengths contain more of the characteristic absorption features that make it possible to
identify materials that may be indistinguishable at visible wavelengths. These char-
acteristics are discussed in more detail below. Color is particularly useful for map-
ping and monitoring the Earth’s surface because light is provided in abundance by
the Sun and efficiently propagated in the form of electromagnetic waves that can be
detected remotely — by both eyes and sensors. Optical sensors have been imaging
Earth from space since the 1970s, so color (both visible and IR) provides one of our
primary sources of information about the spatial distribution, structure, and evolu-
tion of cities over a period in which the world’s urban population has approximately
tripled (United Nations, 2006).

4.1.2 MAPPING AND MONITORING URBAN LAND COVER

Mapping of urban land cover (e.g., water, vegetation, soil, impervious surfaces) makes
it possible to assess the spatial structure of urban land use (e.g., residential, commer-
cial, industrial) in situations where the relationship between the two is unambiguous.
Inferring land use from land cover is not always straightforward, but the mapping

© 2009 by Taylor & Francis Group, LLC



62 Human Settlement: Experiences, Datasets and Prospects

of land cover has numerous direct applications aside from land use determination.
Mesoscale weather prediction and climate modeling, surface and subsurface hydro-
logic modeling, vegetation health, and invasive species monitoring provide a few
examples. Applications of remote sensing in the urban environment include both
target-specific feature identification and mapping of urban land cover to delineate
urban extent. Examples of target-specific feature identification include tasks such
as mapping of vegetation abundance and health, monitoring road and infrastructure
condition, and mapping spatial extent of pervious and impervious surfaces. In con-
trast, mapping and monitoring of urban extent rely on differentiating the aggregation
of built land covers in the urban mosaic from the land cover types associated with
undeveloped areas. Although target-specific tasks can be challenging, they often
benefit from relatively unambiguous target definition. In contrast, attempts to map
the spatial extent of urban development are often limited by subjective or incon-
sistent definitions of what is actually urban. This is problematic because different
definitions of urban can result in very different estimates of urban extent. Multiple,
inconsistent definitions can result in different perceptions which, once engrained
within different disciplines, can impede cross-disciplinary collaboration and pose
serious obstacles to progress. This conundrum arises naturally from the diversity of
urban land use and from the diversity of applications for which a definition is sought.
The problem is further compounded by the fact that even agreed-upon definitions
may not be expressible in terms of physically measurable quantities. The purpose of
this chapter is to provide an overview of some spectral properties of both the indi-
vidual components and the aggregate of the urban mosaic in order to help determine
what can and cannot be quantified with optical remote sensing.

Land cover mapping can take the form of either continuous physical quantities or
discrete thematic classes. Optical sensors measure physical quantities resulting from
physical processes. The process of transforming a physical quantity to another physi-
cal quantity is fundamentally different from the process of transforming a physical
quantity to a discrete thematic class — particularly if the thematic class is defined in
terms of nonphysical criteria (in whole or in part). Each type of mapping has a wide
variety of applications arising from its relative strengths but both depend on color.

Monitoring can be thought of as multitemporal mapping. However, analysis of tem-
poral changes in maps is more complex because it generally involves changes in both
the target (land cover) and the imaging conditions (illumination) at the time of each
acquisition. Distinguishing between these two types of change can be challenging.
However, the distinction is critical because apparent changes can mask actual changes
as well as being misinterpreted as a change where none has occurred.

4.1.3 OBJECTIVES

The primary objective of this chapter is to provide an overview of some spectral
properties of urban land cover and to illustrate some of the strengths and weaknesses
of optical remote sensing for both target-specific feature identification and aggre-
gate urban land cover mapping and monitoring. To achieve this, the chapter first
compares and contrasts the spectral properties of different materials in the urban
mosaic and then provides an overview of their relative abundance within and among
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different urban environments. Because of the variety of optical sensors available,
and their different capabilities, it is necessary to distinguish between the inherent
spectral properties of different materials and those properties that can be resolved
with a specific sensor under specific conditions. For this reason, the analysis uses
comparisons of different sensors to illustrate their strengths and limitations for
detecting spectral properties of different materials and land cover. Similarly, the
spectral diversity of urban environments is illustrated by comparisons using differ-
ent sensors in the same place and the same sensor in different places. The ultimate
objective is to help the reader determine what can, and cannot, be measured consis-
tently under different conditions in different settings. Between what can and cannot
be measured, there lies a multitude of things that can sometimes be measured. The
urban remote sensing literature is full of examples of algorithms and methodologies
that may be effective in one specific location or circumstance but are not generally
robust in other locations or circumstances. The point of the comparisons is both to
illustrate confounding sources of variability and to highlight potential consisten-
cies that might be exploited in multiple locations and circumstances. Ultimately, the
objective is to determine what can and cannot be resolved consistently. Consistency
is key to repeatability.

The presentation in this chapter is directed toward an educated lay audience with
basic science background and some willingness to consider the concept of color in
both physical terms and in a more abstract mathematical context. The mathematical
depiction of color using the concept of a spectral mixing space (explained below)
makes it possible to represent a wide variety of colors (both visible and IR) in a phys-
ical context that makes spectral diversity easier to understand and greatly facilitates
comparison of different urban components and environments at different spatial
scales. This chapter is not an attempt to review or summarize the vast literature on
urban remote sensing, but rather an attempt to illustrate some spectral characteristics
of urban land cover that may be well known to researchers in the remote sensing
community but not necessarily discussed in the context presented here.

4.2 WHAT IS COLOR?

4.2.1 PERCEPTION AND MEASUREMENT

Perception is subjective. Measurement should be objective. The human eye—brain
system is good at perception. Optical sensors are good at measurement. One of the
challenges of remote sensing is to measure what our eye—brain system can perceive
in a visual image. This is a challenge because the human eye—brain system can per-
ceive things that are very difficult to measure objectively. Objective measurement is
essential to repeatability. Repeatability provides a basis for scientific inference.

The eye—brain system perceives images in terms of both color and texture — as
well as spatial context. Traditional image classification algorithms categorize indi-
vidual picture elements (pixels) on the basis of their color — generally without regard
to their texture or spatial context. Analytical approaches that combine color, texture,
and spatial context approach the visual interpretive processes of the eye—brain system
(e.g., Dana et al., 1999).
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One of the strengths of optical sensors is their ability to measure what the human
eye—brain system cannot perceive — specifically, IR radiation. This allows us to
extend our conception of color to a much wider range of wavelengths that provide
considerably more information than the visible spectrum alone. To make use of this
information, it is necessary to relate the idea of color to the more general concept
of reflectance.

4.2.2 CoLOR AND REFLECTANCE

The standard definition of color is a perceived characteristic that is determined by
the response of the eye—brain system to light reflected from a target. Reflectance is
a physical property of the target that is determined by the interaction between the
target material and the electromagnetic radiation (e.g., light) illuminating it. What
we perceive as color is determined, in part, by material reflectance properties. It
is also determined by illumination (explained below). Reflectance properties are
determined by physical interactions (at atomic and molecular scales) that result in
absorption of radiation at specific wavelengths and reflection at others. We perceive
things as different colors because they absorb and reflect light at different visible
wavelengths. Imaging at IR wavelengths makes it possible to distinguish between
materials that may be indistinguishable at visible wavelengths. Although sunlight
is most energetic at visible wavelengths, there are many more absorption features at
IR wavelengths than visible. Distinguishing different target materials and properties
from reflectance is a primary objective of optical remote sensing.

The most complete description of an object’s color is given by the variations of
reflectance as a function of the geometry and wavelength of the radiation illuminat-
ing it. Reflectance is a physical property that determines the fraction of incident
radiation (light) that is reflected at different wavelengths. The perceived color of
an object is a result of both its reflectance properties and its illumination condi-
tions. Changes in illumination can cause changes in the perceived color even without
changes in the target’s reflectance. Distinguishing between the two is a major chal-
lenge in remote sensing. Under controlled conditions, in the laboratory or in the field,
reflectance is measured as radiance reflected from the target relative to radiance
reflected from a white standard. Under less controlled conditions, from satellite or
aircraft, reflectance must be inferred from calibrated radiance measurements. In this
chapter, reflectance is depicted spectrally as a function of wavelength and spatially
as pixel brightness in either color or grayscale.

4.2.3 MEASURING COLOR

In many ways, the optical sensors discussed here are analogous to digital cameras
with superhuman spectral sensitivity. Optical sensors (e.g., digital cameras) measure
radiance. Radiance is the amount of electromagnetic energy measured over a spe-
cific range of wavelengths. When electromagnetic waves interact with matter, some
fraction of the energy is transmitted, absorbed, or reflected at each wavelength. The
reflected radiance measured by a sensor is influenced by both the reflectance of the
target and the spectral energy distribution of the source that illuminates the target. If
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the latter is known, the former can be inferred. Reflectance properties can be inferred
from radiance measurements given some knowledge of the incident radiation and
the processes that influence it between the source, the target, and the sensor. When
radiance is measured in the laboratory or in the field, it can be converted to relative
reflectance by normalizing for the incident radiation reflected from a spectrally flat
(maximally white) standard such as Spectralon®. Because of the close proximity of
the sensor and target, atmospheric interaction with the reflected light is negligible.
In the case of radiance measurements collected from aircraft and satellite, the pro-
cesses of atmospheric scattering and absorption influence both the incident radiation
illuminating the target and the fraction of radiance that is reflected from the target
and measured by the sensor. These processes must be corrected for — or at least con-
sidered — when inferring reflectance properties from radiance measurements. The
process of atmospheric correction and radiometric rectification is a major challenge
in remote sensing. The examples used in this chapter will compare laboratory/field
measurements of relative reflectance with both atmospherically corrected reflectance
measured from aircraft and with exoatmospheric (uncorrected) reflectance measured
from satellites. The primary differences between direct laboratory/field, aircraft, and
satellite measurements are related to the spectral and spatial resolutions of the sen-
sors. The spatial resolution of a sensor determines the size of the smallest object it
can image. The spectral resolution of a sensor determines the diversity of colors that
it can detect.

In remote sensing, there is a fundamental tradeoff between spatial and spec-
tral resolution. Increasing a sensor’s spatial resolution generally comes at a cost
of reduced spectral resolution — and vice versa. This is why sensors that collect
both panchromatic (total brightness over a wide range of colors) and multispectral
(multiple spectral intervals or bands) imagery can resolve smaller objects with the
panchromatic band than with the multispectral bands. The loss of spatial detail in
the multispectral bands is compensated for by their ability to resolve different colors.
Fortunately, many sensors collect multispectral and panchromatic imagery simulta-
neously so the spatial detail of the panchromatic brightness can be combined with
the spectral detail (colors) resolved by the multispectral bands to produce a pan-
sharpened color image with the higher spatial resolution of the panchromatic band.

Spatial and spectral resolution together determine the ability of a sensor to dis-
criminate targets from background. Inadequate spatial (or spectral) resolution leads
to the phenomenon of aliasing in which some different shapes (or colors) become
indistinguishable from each other. In the tradeoff between spatial and spectral reso-
lution, many interpreters favor spatial resolution. However, given sufficient spatial
resolution to distinguish a target from its background, incremental increases in spec-
tral resolution can provide information that may be more diagnostic (Gamba and
Dell’Acqua, 2007).

4.2.4 SpATIAL RESOLUTION

The spatial resolution of a sensor determines the size of the smallest object it can
image. The spatial resolution is dictated by the angular size of the instantaneous
field of view (IFOV) of a single picture element (pixel). A sensor cannot produce a
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coherent image of objects smaller than a single pixel — but sensors can detect the
spectral contributions of objects smaller than a single pixel. Because the sensor mea-
sures a single spatial average of the radiance reflected from all illuminated objects
within its IFOV, the reflectance of each of these objects contributes to the aggregate
radiance measured by the sensor. This process is referred to as spectral mixing. If
the different reflectances that contribute to this aggregate radiance are known, or can
be inferred, it is sometimes possible to estimate the relative abundance of the differ-
ent objects within the IFOV. This is generally referred to as “spectral unmixing” or,
occasionally as “subpixel resolution” — although it is really more akin to subpixel
detection. The resolving power of an instrument refers specifically to the smallest
interval quantity that it can measure. In the case of spectral resolution the interval is
arange of wavelengths whereas in the case of spatial resolution it is a distance. This
distance determines the pixel size on the target, referred to as the ground instan-
taneous field of view (GIFOV). A detailed discussion of the importance of spatial
resolution to urban remote sensing is given by Jensen and Cowen (1999).

4.2.5 SpecTRAL RESOLUTION

The spectral resolution and dynamic range of a sensor determine how many and
which colors it can resolve. Dynamic range refers to the difference between the
brightest and darkest targets a sensor can image without saturation. The spectral
resolution, or bandwidth, of a sensor’s spectral bands determine which parts of the
wavelength spectrum it is sensitive to and how small a wavelength interval it can
resolve. The ability to measure small wavelength intervals allows a sensor to resolve
narrow absorption features (local reflectance minima) resulting from composition
and molecular structure.

Imaging sensors can represent reflectance to varying degrees of spectral detail.
The prefixes hyper and hypo refer to over- and undersampling in either the spatial
or spectral dimensions. Hyperspectral sensors can measure wavelength intervals
smaller than the narrowest feature of interest and hence small enough to resolve very
narrow absorption features in detail. Broadband multispectral sensors (sometimes
referred to as hypospectral) sensors measure a smaller number of broad bands at
specific wavelength intervals by integrating radiance across the interval into a single
average measurement. Broadband multispectral sensors can detect the presence of
some absorption features, but are generally unable to resolve their shape in detail.
The importance of absorption features is explained below. A panchromatic sen-
sor that averages over a single wide range of wavelengths is the most hypospectral
of sensors because it cannot resolve color at all. In contrast, laboratory and field
spectrometers can often resolve hundreds of wavelength intervals as small as 1 nm
(=1/1,000,000,000 m) in the visible through SWIR range. This results in an over-
sampling of most absorption features. Broadband sensors generally image in fewer
than 10 bands in this range and average over wavelength intervals from several tens
to hundreds of nanometers. This results in undersampling. As might be expected,
hyperspectral sensors are more difficult, and expensive, to design, build, and main-
tain. Until quite recently, satellites carried only broadband sensors. It is therefore
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necessary to reconcile the wealth of new hyperspectral information with more abun-
dant broadband information to make best use of the vast historical archive of broad-
band imagery collected since the 1970s.

4.3 SPECTRAL DIVERSITY OF URBAN MATERIALS

At this point, it is necessary to distinguish between the true spectral diversity and the
measurable spectral diversity of the urban environment. The measurable diversity is
a subset of the true diversity. The true spectral diversity of an urban environment is
not generally known — but can sometimes be inferred from the measurable spectral
diversity. However, the measurable spectral diversity depends on both the true spec-
tral diversity and characteristics of the sensor used to measure it — specifically, on
the spatial and spectral resolutions of the sensor. Unless stated otherwise, spectral
diversity will henceforth refer to measurable spectral diversity.

4.3.1 How DIFrereNT SENSORS SEE DIFFERENT MATERIALS

To illustrate the spectral diversity of urban materials, a collection of laboratory and
field spectra are compared both by thematic class and as they might be detected by dif-
ferent optical sensors under ideal illumination and viewing conditions. In each case,
the bidirectional reflectance spectrum is measured from a specific angle (usually per-
pendicular if the target is flat), illuminated from a specific direction. However, most
materials are not isotropic reflectors so the amplitude and shape of the reflectance
spectrum generally varies with viewing and illumination (VI) angles. This variation,
represented by the bidirectional reflectance distribution function (BRDF), can be
approximated with spectra collected under a range of VI angles — although the pro-
cedure is nontrivial in the laboratory (Sandmeier et al., 1998) and must generally be
simulated with numerical models at the scale of urban areas (Meister et al., 2001). It
is important to remember that each laboratory/field spectrum represents only one of
a potentially wide variety of possible reflectance spectra that could be obtained from
each sample under different VI conditions. Figure 4.1 shows bidirectional reflectance
spectra of several classes of materials that are frequently found in the urban environ-
ment. This is an obviously nonrandom collection of materials intended to represent
large objects exposed to overhead sensors. It represents a subset of the true diversity
of materials within the urban environment at finer scales but depicts the materials
composing the largest, most areally abundant targets in the urban environment. In
spite of this limitation, the sample does provide a reasonable, although rather con-
servative, representation of the types of materials that are exposed to remote sensors
in most urban environments.

The laboratory and field spectra in Figure 4.1 (left column) were obtained from
the U.S. Geological Survery (USGS) Digital Spectral Library — version splibO6a
(September 2007). A detailed description of the samples, measurements, and instru-
ments is given by Clark et al. (2007). The library is available online at http://spe-
clab.cr.usgs.gov/spectral-lib.html. In this plot, the spectra are divided into thematic
classes on the basis of the names of the samples, or in a couple of cases by the most
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Lab/Field Spectra Landsat ETM+ Worldview 2 Quickbird
Asphalt

Brick

Concrete

Wood

Reflectance

Plastic

Roofing

Wavelength (pum)

FIGURE 4.1 Spectra of different classes of urban construction materials as resolved by
different sensors. Low albedo materials (asphalt and brick) are plotted at an expanded reflec-
tance scale for clarity. Laboratory and Landsat spectra span the full visible-SWIR wavelength
range while Worldview and Quickbird span only the visible-NIR range. Spectral variability
within each thematic class is comparable to variability among classes Spectra available from
ttp://speclab.cr.usgs.gov/spectral-lib.html

appropriate compositional analog. For example, the roofing asphalt and black roof tar
spectra are included on the asphalt plot because the composition and spectra are simi-
lar. Similarly, a cardboard sample is included with wood and cinder block is included
with concrete, along with two samples of dust debris from the World Trade Center col-
lapse site (Clark et al., 2001). Because of the spectral similarity of these recategorized
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spectra, the apparent variability of these classes is reduced slightly. In contrast, the
Roofing class is a diverse assortment of spectra containing roofing felt, sheet metal,
tarp, tarpaper, tin, and vinyl. It is intended to represent a variety of materials frequently
used for roofing in informal settlements. All spectra were resampled to 10 nm to rec-
oncile different instrument spectral resolutions to a common set of wavelengths. The
decimation to 10 nm results in some slight loss of information but this does not affect
the conclusions to be drawn from the comparison. Because these spectra oversample
even the narrow absorption features, they are referred to here as hyperspectra — in
contrast to the broadband spectra, which generally undersample these features.

The laboratory/field spectra for each class in Figure 4.1 are also compared to the
spectra that would be resolved by different satellite sensors. The reflectance spectra
for the Landsat, Worldview, and Quickbird sensors were obtained by convolving
the spectral response of each instrument with the original laboratory/field spectrum
shown in the left column. Landsat depicts the full visible-SWIR spectrum with three
visible (red, green, blue) and three IR (one NIR, two SWIR) bands with ~30 m ground
resolution. Quickbird images only the visible and near-infrared (VNIR) with three
bands in the visible and one in the NIR at ~2.4 m ground resolution. The Worldview
2 sensor, expected to launch in mid 2008, also images the VNIR but with eight
bands (three NIR) and an expected 1.8-m ground resolution. The Worldview spectral
responses are provisional as of May 2007 (M. Tremblay, personal communication)
based on sensor design parameters. Note the spectral scale difference between the
VNIR and the visible-SWIR spectra.

The characteristic features of reflectance spectra are the overall albedo (brightness),
the specific absorption features, and the slope and curvature of the broad continuum on
which the narrower absorption features are superimposed. The laboratory/field hyper-
spectra capture all of these features over the entire range of visible to SWIR wave-
lengths. These full-resolution spectra are able to resolve both the depths and the shapes
of the different absorption features as well as subtle changes in curvature that result
from superposition of multiple absorptions at similar wavelengths. The laboratory/field
spectra provide the most complete description of the reflectance characteristics of the
materials. The resampled broadband spectra obviously contain far less information.
Most notably, the broad spectral bands cannot resolve the depth or shape of the absorp-
tion features. They can, however, detect the presence of some broad absorptions in the
form of spectral slopes. The narrow band Worldview sensor can also detect some varia-
tions in curvature at visible wavelengths. Of these broadband sensors, only the Landsat
Enhanced Thematic Mapper (ETM+) sensor can approximate the overall continuum
slope or curvature — and only for spectra that do not have large absorptions in any of
the wavebands it samples. In this sense, all of the broadband sensors are susceptible to
spectral aliasing, whereby the presence of absorptions within specific wavebands can
be indistinguishable from continuum or albedo variations. This imposes a fundamen-
tal limitation on what can be distinguished with broadband sensors.

4.3.2  SPECTRAL VARIABILITY

Both the similarities and differences of the spectra within each thematic class are
immediately apparent in the laboratory/field hyperspectra. The absorptions are the
most consistent feature in most classes — although every class except concrete has
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at least one exception, so even absorptions are not definitive class criteria (for these
classes). This persistence of absorptions is physically consistent with the composi-
tional differences that the classes are based on. Continuum shapes vary considerably
within most classes (least with wood) and overall albedo varies by at least a factor of 2
in every class. Despite the considerable variability within each class, the spectral dif-
ferences between classes are readily apparent in the full spectra. Consistencies in these
class differences allow for some discrimination among classes, but detailed analyses of
spectral separability of classes have found considerable spectral ambiguity even with
hyperspectra (Herold et al., 2003, 2004; Heiden et al., 2007). Consistency of spectral
shape within a specific class results from the compositional similarity of materials
within the class and their common absorption features. A detailed discussion of dif-
ferent urban materials and physical properties is beyond the scope of this chapter but
overviews of specific material classes are given by Ben-Dor et al. (2001), Heiden et al.
(2001), Herold et al. (2004), Lacherade et al. (2005), and Schiefer et al. (2006).

With the broadband spectra, the variability within each class is more pronounced
and the consistencies within the class less so. This is a consequence of the broad-
band sensors’ inability to resolve most of the absorption features apparent in the
hyperspectra. In this sense, the spectral degradation resulting from the reduction of
spectral resolution is devastating. Although Landsat preserves some consistencies in
the slope and curvature of the continuum, the VNIR sensors cannot capture conti-
nua. Worldview is able to resolve some significant variations in VNIR curvature but
Quickbird is limited to spectral slope and albedo. Unfortunately, spectral slope is
highly variable and overall albedo is almost totally useless for discriminating any-
thing more subtle than the brightest of targets.

The hope for broadband spectral discrimination of different materials looks even
more grim when we consider that these spectra represent best-case scenarios that
could never be obtained with satellites or aircraft. Lighting conditions and illumina-
tion geometry cannot be controlled in the field and are rarely as optimal as those
used in laboratory conditions. Atmospheric effects are difficult to remove entirely
and are almost always based on numerous assumptions about key parameters so their
accuracy can rarely be verified retroactively. In addition to these uncertainties, there
is the unavoidable issue of spatial scale and spectral mixing (discussed below) that
dilutes and perturbs these spectrally pure examples.

The intraclass spectral variability depicts the disparity between the physical com-
position and the function of each material class. At the same time, the interclass vari-
ability depicts the diversity of form represented in the urban mosaic. Taken together,
these different types of spectral variability illustrate both the potential utility and the
complexity of thematic classification in urban environments. Most urban environments
would be expected to contain a wider variety of spectra than the library used in these
examples — but the spectral variability present in these examples likely underrep-
resents actual measurable spectral diversity. This is consistent with the intention of
the example because even this underrepresentation of spectral diversity illustrates the
difficulty of distinguishing classes of materials with broadband sensors — even under
ideal conditions. In addition to compositional variability, thematic classification must
contend with measurement variability. These spectra were obtained from known sam-
ples under optimal measurement conditions. Spectral ambiguity under these conditions
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guarantees spectral ambiguity under less optimal conditions. Variations in VI geom-
etry can have a profound effect on measured reflectance in the urban environment (e.g.,
Meister, 2001; Schiefer et al., 2006) so the variability in these laboratory/field spectra
would only be greater if they were viewed under different VI conditions.

4.3.3 CoLOR SPACES AND SPECTRAL MIXING SPACES

Although comparative spectra are useful for illustrating consistencies and differences
among different classes of targets, it is difficult to fathom urban spectral diversity by
visual comparison of individual reflectance plots. To characterize the spectral diver-
sity of any complex environment, we require a systematic means to represent both the
wide variety of spectral shapes as well as their relative abundance. This can be accom-
plished by transforming the spectra from the geographic space where they originate to
a spectral space in which the dimensions are related to the most prominent character-
istics of the spectra. The three-dimensional (3-D) color spaces often used to represent
visible colors suggest that this may be possible for the greater diversity of visible and
IR colors. The familiar red/green/blue and cyan/magenta/yellow color spaces repre-
sent the multitude of visible colors as triplets of independent primary colors in which
each dimension corresponds to the brightness of a different primary.

The idea of a visible color space can be extended into the IR by adding dimen-
sions to accommodate the wider range of spectral wavelengths. When dimensions
correspond to brightnesses of different wavelengths of visible and IR light, the idea
of a visible color space can be generalized to a higher dimensional spectral feature
space. A spectral feature space is an abstract complement to geographic space. The
primary difference is related to the dimensionality. Traditional color spaces approxi-
mate visible colors in a 3-D (R, G, B or C, M, Y) space. Adding IR bands increases
the dimensionality of the feature space accordingly. Quickbird pixels exist in a 4-D
spectral feature space, whereas Landsat pixels occupy a 6-D space. Worldview will
hopefully provide us with an 8-D space. Spectra collected by the hyperspectral
imaging spectrometers discussed below exist in spectral feature spaces with more
than 200 dimensions. The laboratory/field spectra have been down-projected into a
216-dimensional space. However, because of the redundancy that results from band
to band correlations, not all spectral dimensions are of equal importance. Plotting
the reflectance values of a collection of pixels at one wavelength versus the reflec-
tance at another wavelength (e.g., visible red vs. NIR) results in a 2-D projection (sil-
houette) of the higher dimensional cloud of points that depicts the collection of pixels
in the feature space. A digital camera imaging in three visible bands (red, green, and
blue) produces triplets of primary color measurements that can be represented as a
3-D cloud of pixels in a red-green-blue feature space. Projecting higher dimensional
spectra into lower dimensional spectral feature spaces provides an alternative means
to quantify characteristics that may not be obvious in reflectance plots.

4.3.4 HigH-DiMensioNAL CLouDs

Spectral feature spaces provide a conceptual tool to represent different characteristics
of target materials in terms of spectral shape. The shape of a spectrum is determined
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by the relationship of each wavelength band to its spectral neighbors. Adjacent bands
with similar reflectance values correspond to flat parts of the spectrum, whereas those
with different values depict slopes resulting from the continuum or absorption fea-
tures. Spectral bands with similar values at different brightness levels are, by defini-
tion, correlated. In many cases, spectrally adjacent bands are correlated because their
bandwidths are too large to resolve reflectance differences between them. Statistically,
correlation implies redundancy whereas variance is often considered analogous to
information content. Linear transformations (rotations) that minimize covariance
or correlation among dimensions are often used to condense information from high
dimensional spaces to lower dimensional spaces in a predictable way. Principal com-
ponent (PC) transformations (Preisendorfer, 1988) and maximum noise fraction trans-
formations (Green et al., 1988; Lee et al., 1990) are commonly used for this purpose.
Geometrically, these transformations are analogous to rotations and translations that
minimize correlation (redundancy) and reveal variance (information). Statistically, the
transformations concentrate as much variance as possible into the smallest number of
independent dimensions possible. These concepts have been used to represent high-
dimensional rock and mineral spectra in terms of their spectral shapes (Johnson et al.,
1983, 1985; Smith et al., 1985). The low-dimensional feature spaces formed from the
PCs of the spectra provide a means to represent independent components of spectral
shape and to quantify the amount of variance (information) associated with each PC.
In this sense, spectral feature spaces with dimensions corresponding to PCs of spec-
tral wavelength bands are analogous to the Hue/Saturation/Brightness space obtained
when the rectangular R/G/B or C/M/Y spaces are transformed to a cylindrical coor-
dinate system in which the diagonal gray axis of the R/G/B space becomes the axis of
symmetry representing overall brightness and the continuum of red, green, blue, cyan,
magenta, and yellow hues are represented by angles about the axis of the cylinder.
Spectral feature spaces offer the additional benefit of representing spectral mix-
tures in terms of their primary components. When variations in spectral shape result
from spectral mixing of targets within an instrument IFOV, the spectral mixing space
of the low-order PCs also provides a physically self-consistent means to represent the
spectral mixing process (Johnson et al., 1985; Smith et al., 1985). When combined
with linear mixture models, this concept provides a basis for inverting mixture mod-
els and “unmixing” mixed pixels (Adams et al., 1986, 1993; Smith et al., 1990). When
considered in the context of convex geometry, linear spectral mixture models can be
cast as linear inverse problems (Boardman, 1989, 1990, 1993; Boardman and Kruse,
1994), thereby allowing the power of geophysical inverse theory (Parker, 1977, 1994)
to be brought to bear on them. The power of spectral mixture modeling lies in its abil-
ity to translate physical measurements (radiance and reflectance) to physical abun-
dance of the basic components of land cover (abundance of soil, vegetation, water).
When the reflectance spectra of the urban materials are compared with spectra of
naturally occurring materials in a spectral feature space their physical characteris-
tics are more apparent. In this chapter the spectral feature space formed from the low
order PCs is referred to as a spectral mixing space following Johnson et al. (1985)
and Smith et al. (1985). Figure 4.2 shows all 96 (some are occluded) of the anthro-
pogenic material spectra (bright colored points) from Figure 4.1 in comparison to
956 spectra of naturally occurring materials (dark gray points) in a spectral mixing
space of the three low order PCs. The supplemental spectra represent a continuum
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FIGURE 4.2 (See color insert following page 324.) Anthropogenic materials in spectral
mixing space. Scatterplots of the four primary principal components (P.C.s) of the laboratory
spectra in Figure 4.1 show the geometric relationship of the anthropogenic spectra (in color)
to vegetation and rock and soil substrates (gray). The latter non-anthropogenic spectra form
a sub-planar, triangular distribution resulting from mixtures of bright substrates (e.g., sand)
and dense vegetation (e.g., grass) with varying amounts of darker, more absorptive material
(e.g., Fe-Mg minerals) or shadow.

of spectral properties found in nature. The supplemental spectra include laboratory
and field spectra of sediment and soil substrates from the Ganges-Brahmaputra delta,
rock and soil substrates from the Gobi desert, and macroscopic mixtures of grass,
soil, and nonphotosynthetic vegetation (NPV) material from the New York metro
area. As will be shown below, these three complementary spectral libraries represent
the most prominent spectral characteristics of a large variety of natural materials.

4.3.5 ENDMEMBERS AND MIXTURES

When visualizing the orthogonal projections of the first three PCs as in Figure 4.2,
the 3-D topology of the mixing space becomes apparent. It takes the form of a par-
tially concave triangular distribution with high albedo substrate, vegetation, and dark
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surface (SVD) (absorptive, transmissive, or nonilluminated) targets at the apexes of
the triangle. In terms of spectral purity, the spectra residing at the apexes of the
triangle are the more spectrally pure endmembers and the spectra on the interior can
be represented as spectral mixtures of these endmembers. Binary mixtures occur
along the straight edges between the apexes. Binary mixing lines between the dark
endmember and other endmembers show the effect of structural microshadow in
vegetation and moisture content in the sediment and soil substrates. Because of the
very limited number of laboratory/field spectra, the structure of this mixing space is
rather sparse. At this point, it is important to distinguish between image endmem-
bers and the true spectral endmembers they are assumed to represent. The image
spectra at the corners of the distribution (cloud) are referred to as image endmembers
on the basis of the relative difference in their spectral shape. In the case of laboratory
spectra, they are known to be spectrally pure. In the case of the image endmembers
discussed below, this is not necessarily true.

The locations of the individual spectra within the mixing space represent char-
acteristics of their spectral shape. These characteristics may arise from spectrally
distinct mixture components or they may arise from differences in VI geometry. The
topology of the mixing space provides a consistent means to quantify the amplitude
(albedo), slope and curvature (continuum), and absorption features of the spectra.
The primary (low order) PCs represent the overall shape that accounts for most of
the variance in the dataset, whereas the more subtle (narrower, lower amplitude)
absorption features are represented by the higher order PCs. With low-dimensional
sensors such as Landsat ETM+ (6-D) and Ikonos (4-D) or Quickbird (4-D), the pri-
mary 3-D mixing space contains almost all of the information in the imagery, but for
hyperspectral sensors with tens to hundreds of dimensions the primary 3-D mixing
space shows only the broad scale features of the spectra. More subtle distinctions
are apparent only in the higher order PCs. The primary mixing space provides a
useful geometry for representing spectral diversity and relative abundance of differ-
ent types of materials — but it conceals a considerable amount of information with
hyperspectral sensors. Examples are illustrated in the following section.

The mixing space distributions in Figure 4.2 quantify the spectral variability that
is evident in the reflectance plots of Figure 4.1. Most of the anthropogenic spectra lie
in or near the triangular plane spanning the SVD endmembers. Most of the plastic
spectra lie well outside this plane. This makes physical sense because most of the
anthropogenic materials are composed of, and therefore spectrally similar to, the
naturally occurring materials in the supplementary spectra (gray). Plastics and a few
of the other spectra lie outside this plane because their organic molecular structure
produces combinations of absorptions not found in the spectra of the naturally occur-
ring materials. As expected, roofing materials are scattered throughout the space
because the class is defined on the basis of function rather than composition.

The commingling of the anthropogenic and nonanthropogenic spectra within the
mixing space has important implications for their spectral separability. In the mix-
ing space, spatial proximity implies spectral similarity. The fact that the different
material classes do not generally cluster, and are intermingled with each other and
with the nonanthropogenic spectra does not bode well for their spectral separabil-
ity. Most spectral classification algorithms implicitly assume that materials in the
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same class will form distinct, separable clusters within the mixing space. Multiple
spectral modes (clusters) within the same class can result in spectral commingling
that violates this assumption. Some nonparametric algorithms, such as support vec-
tor machines (SVMs), are able to accommodate multimodal classes resolvable with
hyperspectral data (e.g., Gualtieri and Cromp, 1998; Huang et al., 2002; Foody and
Mathur, 2004; Melgani and Bruzzone, 2004) and offer considerable potential for
accommodating high-dimensional datasets. SVM classification is particularly well
suited to urban hyperspectral imagery because it is robust to the presence of bright-
ness gradients in airborne imagery (van der Linden, 2008). Nonetheless, the spectral
similarity suggested by the commingling implies that spectral properties may not be
diagnostic of a particular thematic class under certain conditions.

4.3.6 PriNciPAL CONCLUSIONS AND IMPLICATIONS

1. Urban land cover is characterized by the presence of both anthropogenic
materials and naturally occurring materials in forms and combinations
that do not occur in nature. The urban environment also contains an abun-
dance of spectrally distinct anthropogenic materials that do not occur in
nature. Many of the materials in the urban environment are composition-
ally similar to materials found in nature but the form, scale, and geometric
arrangement are generally different. Compositional similarity can make
different objects spectrally indistinguishable. Variation of form can render
compositionally identical materials spectrally distinguishable.

2. Specific materials, and classes of materials, can be distinguished by com-
binations of narrow band absorption features superimposed on a spectral
continuum shape. The location, depth, and width of absorption bands may
be diagnostic; the shape of the continuum less so. Spectral slope and curva-
ture contain considerably less information — particularly when limited to
VNIR wavelengths. Albedo alone is rarely diagnostic.

3. Hyperspectral resolution is required to detect narrow band absorption fea-
tures that distinguish different material classes. Broadband sensors in general
cannot resolve these absorptions with sufficient detail to distinguish materials
uniquely. Full range (visible-SWIR) broadband sensors can resolve the slope
and curvature of the spectral continuum sufficiently to discriminate broad
classes of materials. Visible-NIR broadband sensors omit the more informa-
tive SWIR wavelengths and are limited to band-limited spectral slope.

4. Spectral variability within material classes can be comparable to variabil-
ity between classes. Spectral variability within classes can result in commin-
gling of different material classes in spectral feature space. When combined
with variations in illumination and viewing geometry, this does not bode
well for thematic classifications that assume unimodal spectral clustering
of material classes. Algorithms that can accommodate multimodal classes
(e.g., SVM) are much better suited to classification of urban land cover.

5. Spectral ambiguity limits discrimination. Materials with multiple nar-
rowband absorptions throughout the visible to SWIR wavelengths (e.g.,
wood, plastic) offer the greatest opportunity for spectral discrimination.
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Most construction materials do not satisfy this criterion, so uniqueness and
spectral separability are important considerations for target identification.
However, spectral separability of laboratory/field spectra represents a best-
case scenario, free of atmospheric, illumination, and viewing effects. With
knowledge of the BRDF of different materials, statistical separability anal-
yses (e.g., Herold et al., 2004) can be combined with simulations of these
effects to determine sensitivity of specific targets to spectral masking.

4.4 THE IMPORTANCE OF SCALE

The importance of spatial scale is central to remote sensing of any environment
(Woodcock and Strahler, 1987). The information provided by remote sensing depends
critically on two related spatial scales. The spatial scale of the sensor GIFOV deter-
mines what contributes to the individual radiance measurement associated with each
pixel spectrum. The spatial scales of the individual objects (roofs, streets, trees, etc.)
in the urban mosaic determine the extent of spectral mixing that occurs within the
sensor IFOV that images them. Objects that are much larger than the GIFOV are
spatially oversampled and represented as coherent features in the image and pure
(compositionally homogeneous) spectra in the mixing space. Objects that are com-
parable to, or smaller than, the size of the sensor GIFOV are lost within mixed pixels
and not spatially or spectrally resolved. However, these otherwise unresolved objects
do contribute reflected radiance to the pixel measurement in proportion to their areal
abundance. The spectra in the preceding section are effectively scale-independent
because they represent spectrally homogeneous samples of specific materials. In
urban environments, remote sensors on aircraft and satellites rarely have the oppor-
tunity to image spectrally pure pixels because of the spatial commingling of differ-
ent land cover components at different spatial scales. Scale is particularly important
in remote sensing of the urban environment where the objective may be detection of
specific objects. Welch (1982) recognized systematic variations in the size of build-
ings and streets in many urban environments and proposed that a minimum spatial
resolution of 5 m is generally required to discriminate individual components.

4.4.1 CHARACTERISTIC SCALES OF THE URBAN MOSAIC

The characteristic scale of a collection of objects refers to a spatial scale (or range of
scales) that somehow characterizes the overall distribution of scales of all the objects
in the collection. In this discussion, scale is equivalent to the size in a particular
dimension (generally distance). Knowing the frequency distribution of scales in a
collection of objects is important because it determines which objects can be resolved
by a sensor of a given spatial resolution — and which cannot. Knowing the true fre-
quency distribution of scales of objects in the urban mosaic is realistic only to a lim-
ited extent. One could obtain the distribution by measuring the size of every object in
the mosaic — but this could quickly become tedious. Fortunately, a reasonable rep-
resentation of the characteristic scale of objects resolved in an image can be obtained
efficiently from the spatial autocorrelation of the image. Spatial autocorrelation is a
statistical measure of scale-dependent spatial similarity. Given sufficiently high spa-
tial resolution imagery of an urban mosaic, it is possible to estimate the characteristic
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scale of objects in a finite area (window) of the image from the width of the autocor-
relation function. If the window size is larger than most of the objects in the mosaic,
but smaller than the image, multiple independent scale estimates can be obtained
for different parts of the image. Given a sufficiently large number of estimates, the
distribution of these estimates will approximate the true distribution of object scales.
Figure 4.3 shows scale distributions obtained from Ikonos 1 m panchromatic imagery
for a collection of 14 cities worldwide. For each city, a number of nonoverlapping 100
x 100 m windows were used to calculate area-normalized 2-D spatial autorcorrelation
functions from which characteristic scale was estimated as the width of the central
peak at 10% of its peak value (Small, 2003). The accuracy and robustness of this
estimate can be easily verified by manually measuring dimensions of various objects
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FIGURE 4.3 Spatial scale length distributions for 14 cities worldwide. Scale length estimates
of the average size of discrete objects in the urban mosaic. It is estimated using the width of
the spatial autocorrelation function derived from 1 m panchromatic imagery collected by the
Ikonos sensor. Each estimate is based on a 100 x 100 m site. Each inset example is 200 x 200
m. Modal and median scale lengths are consistently between 10 and 20 m in the 14 cities used
in this analysis. Almost all sites in all cities have scale lengths less than the 30 m resolution of
the Landsat sensor.
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in the images — without the tedium of trying to measure them all directly. There are,
of course, caveats associated with these sorts of estimates (e.g., Goodchild, 1986), but
they quantify and illustrate what can be observed in the Ikonos imagery.
Characteristic scale distributions for different cities are remarkably consistent. All
of the cities have unimodal distributions, with modes significantly larger than the 1 m
pixel size but skewed toward finer scales with long tails containing a few coarse scale
patches corresponding to larger, spectrally homogeneous objects (e.g., warehouses,
athletic fields, water bodies). Some small cities are not large enough to produce a large
number of estimates (e.g., Caraz, Peru) but suggest somewhat smaller scales. For most
cities, only partial coverage of the entire built area was available — but all the cities
contained multiple types of urban land use, so they were functionally and structur-
ally heterogeneous at scales smaller than the image. In spite of the diversity within
and among the different cities, overall shapes and modal scales of the distributions
are very similar. All 14 city distributions, a total of 6357 scale estimates, indicate that
most objects imaged in these cities have spatial scales between 10 and 20 m. This is
consistent with the findings of Welch (1982), but suggests that 5 m is the absolute bare
minimum spatial resolution necessary to consistently resolve features in this size range.
Sampling theory states that the sensor must have a GIFOV of less than half the small-
est feature of interest — but in reality finer resolution is generally required because this
so-called Nyquist criterion represents the limiting case. Aliasing is still possible above
the minimum Nyquist sampling frequency. The paucity of scale estimates smaller than
5 m implies that 1 m is sufficient resolution, but the Ikonos images were not corrected
for adjacency effect so the resulting image blur may bias this estimate slightly. The
clear implication is that the vast majority of multispectral pixels imaged by moderate
resolution (> 10 m) sensors such as Landsat (30 m) and SPOT (20 m) will be spectrally
mixed pixels and will rarely image individual components of the mosaic coherently.

4.4.2 ScALE, RESOLUTION, AND SPECTRAL MIXING

The effect of this spectral mixing can be seen in the mixing spaces of images acquired
by different sensors. Figure 4.4 illustrates this effect for three sensors with different
spatial and spectral resolutions. The Hyperion sensor is a hyperspectral instrument
on the EO-1 satellite measuring 220 spectral bands with 10-nm bandwidth between
357 and 2576 nm. In theory, it has a spectral resolution comparable to the resampled
laboratory/field spectra shown in Figures 4.1 and 4.2, but in practice the true spectral
resolution is somewhat lower because the noise level of the instrument and imaging
process are considerably higher than that of the spectrometers used to collect the labo-
ratory and field spectra. Hyperion’s low signal-to-noise (S/N) ratio limits its ability
to resolve subtle spectral features (Folkman et al., 2001) but it provides considerably
more spectral information than the Landsat ETM+ or Quickbird sensors. The 7.7-km
swath width does not allow for synoptic coverage of large cities but can image a wide
variety of urban land covers along urban-rural transects. The nominal ground resolu-
tion is 30 m so the pixels it images will generally be mixed pixels — but the 10 nm
bandwidth provides the hyperspectral resolution necessary to resolve a wide variety
of spectrally distinct materials. The spatial and spectral diversity is suggested by the
variability of the spectra shown on the sides of the hyperspectral cube in Figure 4.4.
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FIGURE 4.4 Spectral mixing spaces at different spatial scales and spectral resolutions.
Hyperion hyperspectral cube acquired over New York City on September 12, 2001 shows
spatial variability of radiance spectra for both dense urban (right edge) and sparse suburban
(top edge) transects. Orthogonal projections of the 3-D mixing spaces of the 30 m Hyperion,
30 m Landsat and 2.8 m Quickbird reveal a similar triangular topology with substrate, vegeta-
tion and dark surface endmembers. The Hyperion and Landsat images have the same spatial
resolution and were acquired nearly simultaneously under exceptionally clear atmospheric
conditions. The Quickbird imagery covers a smaller area east of the Hudson River and was
acquired on August 2, 2002 under similar illumination conditions. Aside from a prominent
mixing line associated with the aerosol plume, the most significant difference in the mixing
spaces results from stronger binary mixing lines in the Quickbird space.

In comparison, the broadband sensors can only approximate the spectrum with a
few wide spectral bands. The ETM+ instrument on the Landsat 7 satellite images in six
spectral bands over approximately the same spectral range with the same spatial reso-
lution as Hyperion, so a comparison of the two can illustrate the spectral diversity of
urban areas at both hyperspectral and hypospectral resolutions — albeit for thoroughly
mixed pixels. Figure 4.4 compares spectral mixing spaces for coincident Hyperion
and ETM+ images of parts of New York City (NYC) and New Jersey. These mix-
ing spaces are directly analogous to that shown in Figure 4.2 but contain many more
spectra. The 2-D projections of the 3-D space show pixel density within the space as
color variations in which warmer colors correspond to exponentially greater pixel den-
sities. The ETM+ and Hyperion images were acquired almost simultaneously under
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exceptionally clear atmospheric conditions on September 12, 2001. A wide variety
of land covers and urban environments are imaged along the transect — as well as
the aerosol plume emanating from the collapse site of the World Trade Center at the
southern end of Manhattan. For comparison, mixing space diagrams for a Quickbird
swath of Manhattan and part of Brooklyn are also shown in Figure 4.4. The Quickbird
swath was collected on August 8, 2002, under similar illumination conditions almost
one year after the Hyperion and Landsat scenes were collected. The spatial extent of
the Quickbird imagery does not include areas west of the Hudson River so it does not
image the densely vegetated suburban areas in New Jersey, but is still useful to illus-
trate the effects of spatial resolution on the observed spectral diversity.

All three sensors represent urban spectral diversity with topologically similar
mixing spaces — in the lower dimensions. Of course, Hyperion is capable of imag-
ing a much higher dimensional mixing space than Landsat, and the Landsat space
contains SWIR bands not imaged by Quickbird, but the structure of the spaces are
consistent with the overall structure of the mixing space in Figure 4.2. All of the
spaces show triangular structures with linear binary mixing lines emanating from the
dark endmember(s) to the rock and soil substrate and vegetation endmembers. The
structure is very similar to that of mixing spaces of diverse compilations of Landsat
ETM+ (Small, 2004a, 2005), Ikonos MSI (Small, 2003), and EO-1 Hyperion (unpub-
lished data) imagery from both urban and nonurban environments. Despite the large
differences in spatial and spectral resolution of these sensors, analyses of the eigen-
value distributions associated with PCs of the imagery consistently indicate that more
than 90% of the variance is associated with the first three dimensions of the mixing
space. In each case, linear mixing among the three primary endmembers (rock and
soil SVD surfaces) is indicated by the straight or concave edges of mixing space in the
two primary dimensions (referred to as “side view” in the figures). Some nonlinear
mixing is evident in the third dimension but the entire dimension only accounts for a
few percent of the total variance of the image. Even the mixing between the aerosol
plume and the underlying water of the Hudson River appears to be strongly linear in
the September 12 images. This is not generally the case with normal clouds.

The pixel density variations within the mixing spaces of the images show the relative
abundance of different reflectances in the image. The mixing spaces are basically histo-
grams in 3-D and the topology of the distribution reveals the diversity of spectra within
it. In comparison with the sparse mixing space constructed from the laboratory/field
hyperspectra (Figure 4.2), the mixing spaces from the imagery reveal more structure
and illustrate the tendency of the spectral mixing process to produce more continuous
gradations among endmembers. The pixel density variations within the spaces show the
distribution of different types of reflectance within the urban mosaic. Both Hyperion and
Landsat clearly show the spectral effect of compositional variation from the urban core
to suburban periphery as a mixing trend extending from moderately bright substrates
(e.g., cement) to moderately dense vegetation (suburban trees). This gradation is not seen
in the Quickbird mixing space because the imagery does not extend into the greener
suburban areas west of the Hudson River. However, the finer spatial resolution (2.8 m)
of the Quickbird sensor results in considerably less spectral mixing, so the Quickbird
space shows more binary mixing between the dark endmember and the vegetation and
substrates but far less between the latter two. This is to be expected because both veg-
etation and built surfaces have considerable microshadow effects even below the scale
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of the 2.8 m Quickbird pixel. The pervasive presence of shadow is responsible for the
consistently well-defined binary mixing lines emanating from the dark endmember.

4.4.3 SPeCTRAL MIXING AND THEMATIC CLASSIFICATION

As alluded to above, the unavoidable process of spectral mixing has grim implications
for thematic classifications that assume spectral homogeneity at pixel scales. The car-
dinal assumption of spectral thematic classification is that different thematic classes
have distinct spectral properties that result in clustering within the spectral mixing
space — and that the clusters do not intersect. The continuous variation within the
mixing spaces in Figure 4.4 suggests that such clustering only occurs for water at 30 m
scales and that the vast majority of pixels fall within a nearly continuous mixing space
that is largely spanned by vegetation, rock and soil substrates, and dark surfaces. The
dark surface endmember represents a fundamental ambiguity because it can be asso-
ciated with either heavily absorptive (e.g., tar), transmissive (e.g., water), or nonillu-
minated (e.g., shadow) targets. This ambiguity further complicates the classification
task because shadow is pervasive in almost all environments and varies with illumi-
nation conditions. The implication of Figures 4.1 and 4.4 together is that many urban
materials are spectrally indistinguishable with broadband sensors — even under ideal
conditions — and that the generally unavoidable process of spectral mixing tends to
blur the distinction further for all but the largest, most homogeneous, objects in the
urban mosaic. Increasing spatial resolution below the characteristic scale of the urban
mosaic reduces the frequency of spectral mixing among objects considerably — but
highlights the pervasive mixing of illuminated objects with their internal and exter-
nal shadows. However, without sufficiently high spectral resolution the distinction of
many materials cannot be resolved in the VNIR alone. The SWIR waveband con-
tains considerable information related to the vibrational absorptions of many minerals
(Clark, 1999) and lignocellulose absorptions in biomass (Roberts et al., 1993).

The combination of spatial and spectral degradation erases the majority of the
information contained in the spectral properties of urban land cover. This loss of
information, combined with the spectral similarity of many materials in the urban
and nonurban environments (apparent in Figures 4.1 and 4.2), suggests the potential
for considerable spectral confusion between urban and nonurban mixed pixels in
broadband imagery of any scale. This may explain the generally low accuracies that
have resulted from numerous attempts to map urban land cover in moderate resolu-
tion imagery using statistical classification algorithms designed for more spectrally
homogeneous environments. The implications are considered in more detail below.

4.4.4 SpecTRAL UNMIXING AND PHYsICAL PROPERTIES

Despite the pessimistic message of the preceding paragraph, moderate resolution
broadband imagery such as Landsat ETM+ contain a wealth of spectral informa-
tion about the urban environment and its constituent components. Even at subpixel
scales, these constituents interact with the incident solar radiation and contribute to
the aggregate reflected radiance field that the sensors image. In this sense, the mixed
pixel contains valuable information about the different reflecting surfaces within
its GIFOV. The mixing spaces in Figure 4.5 suggest good news in their form and
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FIGURE 4.5 (Continued) (Opposite) (See color insert following page 324.) Hyperspectral
urban diversity in New York City and California. AVIRIS hyperspectral cube shows the diver-
sity and scale of urban reflectance in the densely built-up environment of upper Manhattan
and in both Goleta and its undeveloped periphery. The “red edge” at 0.7 mm illustrates the
abundance of fine scale vegetation in the urban mosaic. Mixing space topology has a skewed
pyramid structure with the dark endmember at the apex and prominent mixing lines associ-
ated with asphalt and vegetation.
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consistency. Straight edges imply linear mixing. As discussed above, the process of
spectral mixing can be simulated with linear mixture models (Johnson et al., 1985;
Smith et al., 1985) and linear mixture models can be inverted to yield estimates of
endmember abundance (e.g., Adams et al., 1986, 1993; Boardman 1989, 1990, 1993;
Smith et al., 1990; Gillespie et al., 1990; Settle and Drake, 1993). The consistency of
spectral endmembers found in different environments suggests that the endmember
fraction maps produced by inversion of linear mixture models may provide a quanti-
tative basis for representing the physical properties of urban areas (e.g., Kressler and
Steinnocher, 1996, 2001; Rashed et al., 2001; Small, 1999, 2001, 2002, 2003, 2005;
Small and Lu, 2006).

Mapping and monitoring spatial and temporal variations in physical properties
within urban environments can provide valuable synoptic information that would
be costly, difficult, or even impossible to obtain otherwise. Examples include veg-
etation health, abundance and distribution, spatial extent of pervious surfaces and
hydrologic parameters, as well as numerous inputs to the land surface models that
drive climate and weather prediction models. Endmember fraction maps may also
provide a basis for thematic mapping of urban land cover. Because the spectral end-
members correspond to the fundamental physical components of land cover (water,
soil, vegetation, etc.), thematic classifications based on abundance of endmember
fractions may be easier to define and validate than traditional classifications. This is
discussed in more detail below.

4.4.5 PriNcIPAL CONCLUSIONS AND IMPLICATIONS

1. Limited spatial resolution and the ubiquitous process of spectral mixing limit
the ability of any optical sensor to discriminate specific targets. Accurate
detection requires both spatial and spectral oversampling to avoid aliasing.
High spatial resolution hyperspectral (HSRH) imagery has considerable
potential because it is capable of oversampling in both spatial and spectral
dimensions and because substantial information is preserved in mixed pixels.

2. The 10- to 20-m characteristic scale of individual objects in the urban
mosaic limits the utility of moderate spatial resolution sensors for urban
mapping — but this may be a small price to pay for synoptic coverage at
urban scales. Virtually all urban pixels imaged by SPOT, Landsat, and other
moderate resolution sensors are mixed pixels but contain valuable informa-
tion about their constituents. Hyperspectral imagery at the same scale could
provide considerably greater detection capability — given sufficiently high
S/N ratio anticipated for future ratio sensors such as EnNMAP (Kaufmann et
al., 2006; Kaufmann, personal communication).

3. Multiresolution comparisons of moderate and high spatial resolution
broadband and hyperspectral imagery reveal consistent mixing space
structure. The primary spectral endmembers corresponding to rock and
soil substrates, vegetation, water, and shadow are present in each mixing
space. Mixing between the endmembers is predominantly linear.

4. Low-dimensional spectral mixing spaces provide a robust physical basis
for analysis and comparison of diverse environments in terms of the
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Jfundamental physical components of land cover. Water, vegetation, soil,
rocks, ice, and snow are the primary spectral endmembers — distinguish-
able even in broadband mixing spaces. They also represent the most physi-
cally distinctive components of land cover.

5. Strongly linear mixing at macro scales allows for recovery of valuable
information from mixed pixels. Specifically, the relative abundance of the
physical endmembers within each pixel. The physical properties of aggre-
gates of these fundamental endmembers are directly relevant to physical
process models in meteorology, hydrology, pedology, and ecology.

The preceding sections have focused on the challenges of measuring and catego-
rizing urban spectral properties at different spatial and spectral scales with different
sensors. The following sections discuss urban spectral diversity from the comple-
mentary perspectives of variability within the urban mosaic and the variability
among different cities.

4.5 INTRAURBAN SPECTRAL DIVERSITY

The preceding sections discussed the spectral diversity of the individual compo-
nents of the urban mosaic, and the challenges of identifying them with different
sensors at different spatial and spectral resolutions. The following sections discuss
the geographic diversity of urban spectral properties and what can be inferred from
the available information at both local and global scales. In this section, intraurban
diversity is considered from the perspective of variability at the scale of the indi-
vidual object (building, street, tree, etc.) and the variety of spectral responses they
produce when combined in different urban environments. In the context of this dis-
cussion, spectral diversity refers to the variety of distinct material spectra, whereas
spectral variability refers to differences among spectra within an image that is not
necessarily diverse. For example, tree canopy spectra may have considerable vari-
ability under different illuminations but would not be considered spectrally diverse
relative to all spectra found in urban environments.

To represent the diversity of urban form, we consider both the dense urban core
and the open urban periphery. This is accomplished by comparing HSRH imagery
in both geographic space and spectral mixing space. In terms of spatial and spectral
resolution, HSRH provides more complete information in both dimensions because
it can image large numbers of individual components of the mosaic in sufficient
spectral detail to characterize the variability of their physical properties.

The imagery used for the intraurban comparisons was collected by the National
Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory’s (JPL)
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor. AVIRIS is a
state-of-the-art imaging spectrometer designed and built by NASA/JPL to image 224
spectral channels at 10 nm spectral resolution and 1 milliradian spatial resolution
with S/N generally greater than 200 and often approaching 1000 (Green et al., 1998).
Swath width and GIFOV depend on aircraft altitude but the ability of the Twin Otter
aircraft to fly slowly at low altitudes allows for meter scale spatial resolution in some
circumstances.
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4.5.1 THe Dense UrBaN CORE

As an example of a dense urban core, we consider upper Manhattan in NYC. The
section of Harlem shown in Figure 4.5(a) consists primarily of multistory (5-20) resi-
dential buildings transected by a grid of broad avenues and narrow cross streets. It
contains two major commercial corridors, six universities and colleges, several large
parks, and numerous vacant lots and public green spaces (e.g., community gardens),
and part of the Hudson River. Structurally, it is similar to the urban cores of many
large cities worldwide. The area was developed relatively rapidly in the late 19th and
early 20th centuries as part of a planned urban expansion, so there may be greater
consistency of building materials than in older cities built over longer periods and
continuously refurbished. Most of the area imaged in this environment is building
roof and broad thoroughfare. Much of the cross street and interbuilding spaces are
in shadow or occluded. The considerable variability in building height — relative
to building footprint and spacing — results in extensive shadowing and occlusion
of small open spaces. At the scale of meters, the surface fractal dimension of this
environment is relatively high so considerable shadow is unavoidable.

The area was imaged by the AVIRIS hyperspectral sensor at 10:53 a.m. local time
on September 16, 2001 as part of the USGS/NASA/JPL emergency response to the
collapse of the World Trade Center on September 11, 2001. The mission was flown as
part of an attempt to determine the presence and distribution of carcinogenic asbesti-
form dust fallout from the cloud of ejecta that resulted from the collapse. A full report
on the findings of the USGS/NASA/JPL team is available online at http://pubs.usgs.
gov/of/2001/0fr-01-0429/ (accessed on February 26, 2008). At the flight altitude of
3800 m, AVIRIS has a spatial resolution of 4 m and a swath width of ~2.5 km. The
radiance imagery was atmospherically corrected and converted to reflectance using
the MODTR AN-based FLAASH algorithm (RSI, 2003) with a midlatitude summer
atmosphere model. Both urban and maritime aerosol models produced reasonably
similar results with spectral polishing (RSI, 2003). The hyperspectral cube and cor-
responding mixing space are shown in Figure 4.5(a) with the five primary spectral
endmembers residing at the corners of the pyramidal 3-D mixing space.

The spectral diversity of the urban core is evident in both the spatial variability
of the spectra on the sides of the cube and the structure of the mixing space. The
sides of the cube show only the spectra along top (2.5 km) and right (2 km) edges
of the image but they reveal considerable spectral diversity from pixel to pixel. The
red edge at 700 nm reveals the presence of abundant fine scale vegetation within the
mosaic. The characteristic scale of the core is generally in the 10- to 20-m range
shown in Figure 4.3, so the 4 m AVIRIS GIFOV slightly oversamples the individual
targets in the mosaic. Hence, it has the opportunity to sample spectra from individual
objects. This is evident by the fact that individual buildings and streets are clearly
resolved in the image. However, the accompanying mixing space in Figure 4.5(a)
reveals large numbers of spectrally mixed pixels. The first three dimensions of the
mixing space account for 83 + 14 + 1 = 98% of the spectral variance in the image.

The mixing space is dominated by two strongly linear binary mixing lines extend-
ing from the dark endmember to the vegetation and high albedo substrate endmem-
bers. These mixing lines are analogous to those seen in the Quickbird mixing space
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in Figure 4.4. The binary mixing with the dark endmember indicates that shadow
has a very strong influence on the mixing process in this environment. To some
extent, New Yorkers’ predilection for dark colors, in both clothing and roofing mate-
rial, contributes to this binary mixing with the dark endmember — but the effect of
shadow is pervasive at all scales. Ternary mixing among all three of the primary end-
members does occur but much closer to the dark endmember. The dominance of the
mixing space by the two binary mixing lines results from the fact that the brightest
of the illuminated targets (vegetation and bright roofs) mix primarily with their adja-
cent shadows rather than other materials. This is to be expected from the moderate
solar elevation (68°) and the pervasive presence of shadows resulting from the highly
variable building height and canopy shadow in the forested parks. A third mixing
line is also visible in the primary mixing plane corresponding to bright sandy soil in
several ballfields. The brightness variations in the soil result from moisture content
rather than shadow. Multiple spectra are plotted for each endmember to give some
indication of endmember variability. As might be expected, variability is greatest for
the high albedo roofing materials because they are generally planar, quasi-specular
reflectors (Meister, 2000).

The third dimension of the mixing space reveals two additional spectral endmem-
bers and some degree of nonlinear mixing. The secondary fourth and fifth abundant
endmembers correspond to brick tiling and cement roofs. The asphalt on the avenues
is darker and therefore difficult to distinguish from the other dark components in
the mixing space (shadow, water, roofing tar). At a scale of 4 m, spectrally pure
illuminated asphalt is relatively rare in this part of Manhattan because the broad
northeast-southwest avenues generally have dense traffic around midday so mixing
with vehicle reflectances is hard to avoid. Cross streets have much less traffic but are
narrower and rarely receive direct illumination even in midsummer.

Several spectrally distinct clusters can be found even in the low-dimensional mix-
ing space. Different types of metal, cement, and composite roofing are sufficiently
homogeneous to form clusters, as does an Astroturf (artificial grass) athletic field and
several sandy ballfields. A higher order endmember found in some abundance cor-
responds to the copper roofs on several of the older large buildings on the Columbia
University campus. The campus is located on a topographic ridge so the copper
roofs are widely spaced and well illuminated. Because the PC rotation is determined
by covariance, spatially abundant materials have a greater influence on the rotation
and are more likely to be detected in the low-order dimensions. Clustering of less
abundant materials may occur but would be less obvious in the low-order 3-D mix-
ing space.

4.5.2 THe OpeN URBAN PERIPHERY

As an example of an open urban periphery, we consider Goleta, CA. Goleta is on the
western edge of the Santa Barbara metro area and provides an example of the type
of suburban environment on the periphery of many cities. Although the building
style and construction materials are not necessarily widely representative, the diver-
sity and scales of land cover are characteristic of many peripheral urban environ-
ments and smaller settlements. The area contains mixed-use residential, commercial,
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and light industrial development transitioning to agricultural land and undeveloped
open space with sparse vegetation and exposed soil. This area is a natural comple-
ment to the NYC area because it represents high spectral diversity at multiple scales
as the suburban development transitions to undeveloped land cover on the periphery
of the built environment. This area has been the focus of very thorough and exten-
sive study by researchers at the University of California Santa Barbara in terms of
spectral diversity of several classes of materials under different physical conditions
(Herold et al., 2003, 2004, 2006).

The area was imaged by the AVIRIS hyperspectral sensor on June 6, 2000, at
~10:47 a.m. local time. The spatial resolution is 2 m. The image was atmospherically
corrected with the MODTRAN radiative transfer code using the approach described
by Green et al. (1993) and Roberts et al. (1997) (D. Roberts, personal communica-
tion). The 2 x 4 km hyperspectral cube and corresponding mixing space are shown
in Figure 4.5(b) along with the five primary spectral endmembers from the corners
of the low-dimensional mixing space.

The mixing space is similar to the NYC mixing space in terms of both topology
and spectral endmembers. As in the NYC case, the mixing space is strongly two
dimensional with 74 + 21 + 3 = 98% of variance in the first three PC with the dark
to substrate mixing line on the primary axis (PC 1) and the vegetation mixing line
on the secondary axis (PC 2). As in the NYC case, the binary mixing lines from the
dark to the substrate and vegetation endmembers are strongly linear. However, in
contrast to NYC, shadow is not dominant in this space and the mixtures are more
evenly distributed throughout the mixing space. Greater uniformity of surface eleva-
tion, in both developed and undeveloped areas, results in far less deep shadow at
pixel scales. At 2 m pixel scale, this area has a lower surface fractal dimension than
the NYC study area. The area was also imaged under a somewhat higher solar eleva-
tion angle of 74° to further reduce shadow effects.

Whereas the two primary dimensions of the mixing space are dominated by veg-
etation and soil substrate brightness, two secondary endmembers — wood shingle
and composite roofing — appear in the third dimension. Several spectrally distinct
surfaces also form clusters at the periphery of the mixing space. Composite roofing
and wood shingles are present in sufficiently great abundance to form complete mix-
ing continua with the other endmembers. This, combined with the added spectral
diversity of the undeveloped periphery and generally greater soil exposure (com-
pared to NYC), results in a more pyramidal mixing space less dominated by the
binary shadow mixing lines in the primary mixing plane (PC 1 and PC 2).

Within the interior of the space, three ternary mixing trends are visible. Strong
mixing trends between green vegetation, NPV, and asphalt are clearly visible in
the PC 3 versus PC 2 (end view) projection in Figure 4.5(b). The limb with higher
green vegetation fractions (closer to the vegetation endmember) corresponds to pix-
els in both the developed and undeveloped areas. At lower vegetation fractions,
the mixing trend bifurcates into two limbs with the more asphalt-rich mixtures
occurring in the residential areas and the more NPV-rich mixtures occurring in the
undeveloped areas — presumably from senescing wild grasses common throughout
southern California. The asphalt-rich limb of the mixing line joins another more
pure asphalt limb seen in the PC 1 versus PC 3 (top view) projection corresponding
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to progressive increase in asphalt albedo along PC 1. This projection actually shows
three separate albedo-varying trends with asphalt, soil/NPV, and green vegetation.
The trend for vegetation seems to be primarily related to canopy closure and micro-
shadow in the agricultural areas. The soil/NPV trend could result from variations
in either soil moisture or microshadow modulating the aggregate albedo of the soil.
The albedo variations along the asphalt mixing line are presumably the result of
both partial shadow and asphalt weathering. The phenomenon of asphalt weather-
ing, particularly in this study area, has been discussed extensively by Herold et al.
(2004, 2006).

4.5.3 SPECTRAL DIMENSIONALITY

Given the spectral and spatial oversampling provided by AVIRIS, we can consider
the spectral diversity of these two environments in terms of the spectral dimen-
sionality of the two datasets. Estimating the dimensionality of a noisy signal
requires discrimination of signal from noise. The effective dimensionality that can
be detected by the sensor is limited by the fixed number of bands of the measure-
ments and does not necessarily represent the true dimensionality of the environment
imaged. Redundancy between correlated measurements makes estimation of effec-
tive dimensionality more difficult. Oversampling guarantees redundancy. The distri-
bution of spectral variance among PCs is often used as an indication of the effective
dimensionality of multivariate data (Preisendorfer, 1988). The implicit assumption is
that variance implies information, whereas correlation implies redundancy and that
decorrelation by rotation provides an efficient means to distinguish information from
redundancy. Dimensionality related to the partition of variance can be estimated
from the eigenvalues of the covariance matrix if there is a clear distinction between
the large eigenvalues representing presumed signal and the small eigenvalues repre-
senting presumed noise.

The transformations used to rotate multidimensional data can be determined
by different criteria. Most PC transformations derive rotation parameters from the
covariance matrix of the data. Some PC transformations use the correlation matrix
to reduce the influence of outliers. Mixing spaces can also be rendered using a mini-
mum noise fraction (MNF) transformation (Green et al., 1988; Lee et al., 1990). The
MNF transformation is effectively a cascade of PC transformations (Green et al.,
1988) designed to accommodate the fact that the noise components of some spectral
bands may have larger amplitude than the signal components of other bands (Lee et
al., 1990). The MNF transformation used most commonly is the complement to the
maximum noise fraction transformation described by Green et al. (1988) but orders
the resulting eigenimages by decreasing the S/N ratio rather than increasing S/N
ratio as described in the original formulation.

Comparing eigenvalue distributions for different rotations of the HSRH imagery
suggests similar spectral dimensionality. The NYC mixing space is strongly two
dimensional in terms of variance with 83 + 14 + 1 = 98% of variance in the first three
PCs (respectively) and a less high albedo substrate-dominant 58 + 38 + 1 = 97% of
variance in the three low-order MNF components. In terms of spectral variance, the
Goleta PC mixing space is also basically two dimensional with 74 + 21 + 3 = 98%
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of variance in the first three PCs. The MNF transform yielded similar dimension
scaling with 65 + 25 + 4 = 94% variance in the three low-order components. In both
cases, the PC transforms allocate slightly more variance to the primary 3-D mixing
space than do the MNF transforms. The PC transforms also ascribe considerably
more variance to the first component than do the MNF transforms — presumably
influenced by the high albedo outliers.

Comparing spectral endmembers from the corners of the mixing spaces shows
that the primary SVD endmembers are virtually identical for PC and MNF trans-
forms but the secondary endmembers are different in a couple of cases. Rather than
cement and brick, the MNF transform of the NYC data shows concrete and copper
roofs as secondary endmembers. The MNF transform of the Goleta data produces a
less skewed topology with similar endmembers but a tighter, more prominent asphalt
mixing line. The secondary endmembers of the NYC and Goleta datasets corre-
spond to different materials (concrete and brick vs. wood shingle and composite) but
their spectral shapes have some similarity (SWIR-bright wood and brick; visible-
bright cement and composite). The perspective provided by linear transformations
depends on the rotation parameters and different transforms use different criteria to
obtain these parameters.

Consistency among transformations is generally more meaningful than the dif-
ferences between them. All of these transformations derive rotation parameters from
the data themselves so different datasets generally produce different rotations —
sometimes very different. Although this can make intercomparison more difficult, it
also lends greater credence to consistencies in the resulting mixing spaces. The PC
mixing space and endmembers were used here for consistency with the rest of the
examples.

The comparison of mixing spaces derived from different rotations further high-
lights the persistence of the structure of the mixing space across different urban
environments. The secondary endmembers vary, as would be expected, but the SVD
endmembers are always present and dominate the topology. The other persistent
feature is the relatively continuous distribution of pixels within the mixing space.
Clusters do exist but are relatively rare (or hard to detect). The presence of mix-
ing lines extending toward the dark endmember suggests that the internal continu-
ity of the mixing space results not only from spectral mixing within the IFOV but
also from continuous variations in illumination and BRDF effects. Extensive study
of the BRDF properties of urban materials by Meister and colleagues (Meister
et al., 1999; Meister, 2000) highlight the importance of VI geometry in urban
environments. Schiefer et al. (2005) and colleagues compared multiple view angle
HyMap hyperspectral imagery for Berlin and documented considerable variability
in reflectance resulting from brightness gradients as also described by Herold
et al. (2006).

It is difficult to overstate the importance of geometry to imaging the urban envi-
ronment. Roof geometry has been identified as a significant source of variability
in both dense urban core environments (Heiden et al., 2001, 2007) as well as more
open suburban peripheral environments (Herold et al., 2004). The wide variety of
VI geometries in the urban environment effectively blurs the distinction of other-
wise spectrally homogeneous materials within the mixing space. A key question for
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target discrimination and classification concerns the extent to which these BRDF
effects result in spectral similarity of different materials within the mixing space.
If the BRDFs of different materials do not intersect in mixing space, they should be
spectrally separable — in theory. To the extent that the BRDFs intersect and become
spectrally indistinguishable, an unavoidable source of error exists.

4.5.4 PriINcIPAL CONCLUSIONS AND IMPLICATIONS

1. The spectral and spatial oversampling provided by high-resolution hyper-
spectral imagery has the capacity to distinguish specific materials and
classes within the urban mosaic but only if they are actually spectrally
distinct. Many are not.

2. The spectral mixing space topology of high-resolution hyperspectral data
confirms the multiscale persistence of the triangular SVD structure —
but does not reveal the true spectral dimensionality. Covariance-based
transformations are biased in favor of representing the most abundant and
spectrally distinct classes of spectra — the SVD endmembers. These three
fundamental endmembers are complemented by a variety of more exotic
but less abundant endmembers that have less influence on the rotation and
may be less obvious in the mixing space if they reside nearer the dark apex
of the mixing space. The low-order PCs may contain the vast majority of
the variance but the remaining few percent may have value far exceeding its
variance fraction.

3. Spectrally distinct materials form clusters in the hyperspectral mixing
space — but the clusters are blurred by spectral mixing and by variations
in VI geometry. The minimal clustering observed in the low-dimensional
mixing space reveals the broad similarity of many spectral shapes as well as
the pervasive influence of the BRDF characteristics of different materials.

4. Variations in overall brightness resulting from illumination and shadow
can account for much of the variance in urban hyperspectral imagery.
Deep shadow is pervasive in urban cores — less so on the periphery.

5. Higher order endmembers from different urban environments can have
similar spectral shapes (slope, curvature) but correspond to composition-
ally different materials. The rotations used to render the mixing space are
based on variance, not physics. This can result in fundamental ambiguities
related to viewing geometry and illumination effects.

6. The mixing space representation of optical spectra is an important
complement to geographic space — but it does not fully lift the curse of
dimensionality. It offers the benefits of being informative, efficient, and
repeatable at the cost of data dependency and nonuniqueness.

4.6 INTERURBAN SPECTRAL DIVERSITY

The preceding section examined intraurban spectral diversity at the scale of indi-
vidual components of the urban mosaic and the differences in their physical com-
position that give rise to their spectral properties. The combination of high spatial
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and spectral resolution provided by AVIRIS illustrates the diversity of spectral
responses associated with materials commonly found in urban areas and it shows
their relative abundance in different types of urban environments. However, the
comparison of two relatively small example locations, no matter how diverse, is not
necessarily representative of the spectral diversity of urban areas worldwide. The
basic components of urban environments (e.g., buildings, streets, infrastructure)
may be the same worldwide but building materials and styles of construction vary
widely among cultures and socioeconomic settings. To draw general conclusions
about urban spectral characteristics, it is necessary to consider a wider variety of
urban environments than NYC and Santa Barbara. Unfortunately, high-resolution
hyperspectral imagery is not widely available worldwide — yet.

The Thematic Mapper (TM) and ETM+ sensors carried on the Landsat satellites
provide a 25-year archive of multispectral imagery for every city on Earth. Dekameter
(10-100 m) resolution broadband sensors, such as those carried by Landsat, Aster,
and SPOT, may have sufficient spatial and spectral resolution to distinguish urban
land cover from the variety of natural land covers in the nonbuilt environments
within which cities are imposed. If so, they could provide an invaluable asset for
the study of urban structure and evolution at global scales for a period in which the
world’s urban population has tripled. Using this resource to map and monitor urban
structure and evolution requires a robust, quantitative, repeatable way to distinguish
urban from nonurban land cover. This raises the question of which aggregate spec-
tral properties might be generally representative of urban environments worldwide.
We can consider this from the perspective of urban spectral diversity in both geo-
graphic space and spectral mixing space.

4.6.1 DiversiTY IN GEOGRAPHIC SPACE

We consider geographic spectral diversity by comparing a pseudorandom collec-
tion of 30 cities worldwide. Each city is represented by a 30 x 30 km subscene of
multispectral imagery collected by Landsat 7 between 1999 and 2001. In most cases,
the dense core and open periphery are completely contained in the image as well
as some of the surrounding environments. In a few cases (New York, Phoenix, Sao
Paulo, San Francisco), the densely built-up areas are much larger than the image so
the location is chosen to illustrate a gradient from dense core through open periph-
ery. In some cases, the city is clearly surrounded by undeveloped land or water but in
many cases the urban area is set within a much larger regional metroplex and cannot
be meaningfully defined on the basis of its administrative boundary or even popula-
tion density. The selection of cities is pseudorandom in the sense that it was chosen
on the basis of both geographic diversity and availability of cloud-free imagery circa
2002 when the data were compiled. A couple of cities have some cloud cover (Taipei,
Santo Domingo), but were included for contrast with other cities in comparable phys-
ical or socioeconomic settings.

Identical processing and analyses were applied to each city to facilitate compari-
son. All of the images are calibrated to exoatmospheric reflectance to remove the
effects of seasonal and latitudinal illumination differences. No atmospheric correc-
tion is attempted because reliable atmospheric parameters are not generally available
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for many (perhaps most) of the cities and validation of the correction would be imprac-
tical. In a few cases (Lagos, Santo Domingo, Taipei), strong atmospheric effects are
apparent in the image but the majority are relatively clear. The purpose of the com-
parison is to illustrate similarities and differences in urban spectral properties that
are apparent even in the presence of mild atmospheric effects. Twenty-seven of the
30 cities were included in a comparative spectral mixture analysis by Small (2005).
Three additional cities (Dhaka, Essen, and Phoenix) were included to increase diver-
sity and facilitate comparison with other more detailed studies of the individual city.
The study described by Small (2005) provides a more detailed comparative analysis
of the spectral characteristics of each city. The purpose of this comparison is to high-
light similarities and differences among the spectral properties of the cities.

Qualitative side-by-side comparison of the cities in geographic space illustrates
both interurban and intraurban diversity and suggests that they are comparable in
magnitude for most of these cities. Figure 4.6 shows false color composites of 28 of
the 30 cities. The blue, green, and red channels of each image correspond to visible
(ETM band 2), NIR (4), and SWIR (7) reflectance, respectively. Two cities (Tianjin
and Taipei) are omitted to preserve the aspect ratio of the figure but are included
in the mixing space analysis and available with the other images at the URL given
below. Each image was subjected to the same 1% linear stretch (on the combined his-
togram) to enhance contrast of the midtones. Identical calibration and enhancement
facilitates visual comparison on the basis of color. It is immediately apparent that
considerable spectral diversity exists both within and among the different cities. The
spectral diversity also spans a wide range of spatial scales. At the scale of the entire
28 image composite viewed simultaneously, only coarse-scale variations are obvi-
ous. At the scale of four images viewed simultaneously, a finer, intermediate scale of
variation is apparent. Viewed at full resolution of one image pixel per screen pixel,
finer-scale variability becomes visible. The full-resolution images in Figure 4.6 are
available online at http://www.LDEO.columbia.edu/~small/Urban/Cities. This scale
varying heterogeneity is consistent with the high fractal dimension of urban struc-
ture and land use (Batty and Longley, 1996) but it precludes the notion of strict self-
similarity. The spectral consequences of this scaling are discussed below.

The most clearly identifiable feature in most of the cities is the urban core. It gen-
erally appears darker than surrounding areas. Comparative analysis of high spatial
resolution imagery indicates that this results from the abundance of shadow in areas
with more street canyons and variable building heights (Small, 2003). Although the
core is often darker than surrounding areas, it does not show a single consistent hue
in the false color composites shown in Figure 4.6. In most of these examples, the hue
even varies within the darker areas although it is harder to see without more severe
stretching. A comparable variability in hue can also be observed in the somewhat
brighter areas surrounding the core in most of these cities.

Discrete urban/nonurban boundaries are not obvious for most of the cities. In
many cases, a central core can be identified but in most cases a well-defined edge to
the city is not apparent. Numerous sharp transitions in land cover are visible in these
images, and many are clearly boundaries between densely and sparsely developed
land areas but very few constitute a closed boundary fully separating the city from
its surroundings. In many areas, on almost every image, transitions from an urban
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Beirut 6/20/00

Chicago 7/2/01

Guangzhou 9/14/00

Kolkata 11/15/99

Phoenix 5/11/02

San Francisco 7/7/99

Santo Domingo 9/22/99

Visible (550 nm)
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Budapest 6/8/00

Damascus 6/22/00

Hanoi 12/20/99

Lagos 2/6/00

Port au Prince 7/2/99

San Salvador 12/31/99

St. Petersburg 4/25/00

Near Infrared (800 nm)
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core to undeveloped land cover correspond to spectral gradations. In many cases,
the transitions correspond to steep population density gradients (e.g., Guangzhou,
NYC, Sao Paulo) but not necessarily to uninhabited densities. Given some ancillary
information (e.g., maps), it may be possible to identify spectral transitions associated
with specific land cover changes corresponding to population density gradients, but
there is no obvious spectral boundary separating urban from nonurban land cover
that is consistent in all, or even most, of the cities in Figure 4.6. However, in spite
of the inconsistency, an experienced interpreter may feel comfortable distinguishing
between anthropogenically modified urban land use and undeveloped land cover in
many of these examples — possibly on the basis of image texture. Nonetheless, it is
apparent from the spectral diversity that visual interpretation of urban extent would
be extremely subjective without clearly defined, measurable criteria and a verifiably
repeatable procedure. This is an example of a situation in which human perception is
very different from measurement.

4.6.2 DIVERSITY IN SPECTRAL SPACE

Transforming the ETM+ images of these 30 cities from geographic space to spec-
tral mixing space reveals that almost all of these cities have mixing space topologies
resembling the ternary SVD topology seen throughout this chapter. A comparative
spectral mixture analysis of 28 of these cities showed that all of them have very simi-
lar SVD endmembers (Small, 2005) — although the completeness of the triangular
topology varies according to relative abundance of spectrally pure vegetation or rock/
soil substrate. Specifically, several cities in arid and semiarid environments (Beirut,
Cairo, Damascus, Kabul, Phoenix, Quito) have little or no dense natural vegetation and
a couple of the cities were imaged when vegetation was largely senescent (Pyongyang,
St. Petersburg, Tianjin). In every case, a pronounced mixing line exists between a very
consistent dark endmember and a more variable bright substrate endmember. This
mixing line is analogous to the gray axis in 3-D color spaces (e.g., RGB, CMY, HSV).
The persistence of the SVD topology across different spatial and spectral resolutions
for a wide variety of urban areas is analogous to that seen in global mixture analyses
of nonurban land cover with Landsat (Small, 2004a). The implication is that urban
areas generally contain all three fundamental spectral endmember types in abun-
dance sufficient to approximate global spectral diversity for nonpolar land areas. A
direct comparison of the mixing spaces of the global compilation of urban and nonur-
ban ETM+ imagery can illustrate consistent differences (Figure 4.7).

The persistence of the triangular mixing space topology and the SVD spectral
endmembers is a fundamental characteristic of urban reflectance. The examples pro-
vided here demonstrate its consistency among and within a wide variety of urban
environments as measured by several different instruments at different spatial scales.
Although conceptually similar to the vegetation—impervious surface—soil (V-I-S)

FIGURE 4.6 (Opposite) (See color insert following page 324.) Inter-urban comparison
of 28 cities as seen by Landsat 7. Each 30 x 30 km subscene has been calibrated to exo-
atmospheric reflectance and enhanced with the same 1% linear stretch so colors are compara-
ble. Full resolution color images available at http:/www.LDEO.columbia.edu/~small/Urban
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model proposed by Ridd (1995), it is fundamentally different. The V-I-S model repre-
sents the functional components of urban land cover by their physical properties. The
V-I-S components are not equivalent to the SVD endmembers. The SVD endmenbers
emerge from analyses of the spectral mixing spaces as illustrated throughout the
chapter. In contrast, the V-I-S components are defined on the basis of their functional
properties as land cover. They are not equivalent to the spectral endmembers because
they are not spectrally distinct. Specifically, impervious surfaces do not represent a
single spectral endmember. Imperviousness is not a spectral property but a hydraulic

Global ETM + Urban ETM+
Dark Dark
Dark
Dark Substrate
Substrate
FIGURE 4.7
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Urban ETM+ Urban Cores

FIGURE 4.7 (Continued) (Opposite) (See color insert following page 324.) Comparison of
Landsat ETM+ global composite mixing spaces for urban and non-urban environments for 30 cit-
ies, and for mixing spaces with 9x9 km cores of each of the 30 cities in the composite. Aside from
spurs associated with reefs, ice and snow in the global composite, the topology of the mixing spaces
is strikingly similar. The non-urban space has three distinct internal clusters (not including water)
along vegetation and substrate mixing lines but the urban space has only one cluster for built-up
cores. Note that even the most densely built-up cores together span almost the entire mixing space.

property. As illustrated in Figure 4.1, impervious surfaces have considerable spectral
diversity and yet are often spectrally indistinguishable from pervious surfaces. This
was explicitly acknowledged by Ridd (1995) when the V-I-S model was proposed,
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but is often overlooked in later analyses that attempt to use the V-I-S model as the
basis for a spectral mixture model. The V-I-S conceptual model does not provide an
adequate basis for a spectral mixture model because there is no single impervious
surface that could serve as a spectrally distinct endmember. There are, in fact, a wide
variety of impervious surfaces but many of them are spectrally indistinguishable
from pervious surfaces. In urban environments there is another ambiguity related to
the dark surface endmember. The dark endmember represents an unavoidable ambi-
guity because it denotes the absence of a reflectance signature. As such, it can rep-
resent absorptive, transmissive, or nonilluminated (shadow) surfaces. Unfortunately,
a number of impervious surfaces (e.g., roofing tar, tar paper, fresh asphalt) are also
largely nonreflective so the misidentification of impervious surface is exacerbated.
Although the V-I-S model is a valuable conceptual model for urban land cover, it
does not provide a sufficient general basis for a spectral mixture model.

Urban areas do not appear to have a single, consistent spectral signature but rather
appear to be characterized by their fine scale spectral heterogeneity. Figure 4.7(a)
shows a side-by-side comparison of the global urban and nonurban mixing spaces
derived from compilations of ETM+ imagery. The composite mixing spaces are
nearly identical in form — although the urban space lacks the mixing lines asso-
ciated with ice and snow and the spur associated with reefs. Otherwise, the three
primary endmembers are consistent and the topology is very similar. The variation
of the third dimension (PC 3) with overall brightness (PC 1) reveals the presence of
two intermediate albedo endmembers with slightly convex upward continua with
opposite spectral slopes similar to the secondary substrate endmembers shown in
Figure 6 of Small (2004a). Whereas identification of specific materials from Landsat
spectra is speculative at best, the shapes of the continua are consistent with those of
high visible reflectance cement and SWIR-bright NPV.

It is interesting that none of the mixing lines or internal clustering of the nonurban
global mixing space is present in the urban mixing space. This suggests that the interior
of the urban mixing space is more spectrally mixed than that of the nonurban space —
although it is not necessarily more spectrally diverse. Spectral heterogeneity and spec-
tral diversity are not equivalent. When comparing these mixing spaces, it is important
to remember that the density variations within the space result from the land cover dis-
tributions in the 30 subscenes that went into each compilation. The relative abundances
of these landcover types in the 30 subscenes do not necessarily represent their global
abundance because the subscenes were chosen on the basis of spectral and environ-
mental diversity — not in proportion to global land cover abundance. Nonetheless, the
rapid convergence of mixing space topology demonstrated by Small (2004a) suggests
that the spectral diversity of the subscenes approaches the true global diversity.

The most obvious differences between the urban and nonurban mixing spaces
are related to the internal structure. The nonurban mixing space has a very complex
structure with numerous high-pixel density modes and mixing trends connecting
them. In contrast, the urban mixing space is dominated by one large mode resem-
bling a broad mixing trend extending from a wide range of dark-substrate mixtures
along the gray axis upward to a more restricted range of relatively lush vegetation/
shadow mixtures on the dark-vegetation axis. A weak mixing line is visible within
this central mode. The top view projection (PC 3 vs. PC 2) shows the mixing line
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extending to a strongly convex, nearly circular, edge that extends back toward a mul-
timodal distribution of dark endmembers. The multiple modes of the dark endmem-
ber correspond to different water bodies in different cities with different reflectance
properties. The mixing trend responsible for the convex appendage on the mixing
space is caused by atmospheric scattering and absorption in a few of the images with
thick atmospheric haze (Hanoi, Lagos, Calcutta). Most of the subcircular mixing
trend is associated with Lagos alone.

The similarity of the global urban and nonurban mixing spaces suggests that the
spectral diversity of urban areas — and their immediate surroundings — approaches
the global spectral diversity resolved by the ETM+ sensor. This implies that urban areas
may contain or be surrounded by a near-global diversity of land covers. However, the
centralized clustering shown by the internal structure of the urban mixing space sug-
gests that the cities themselves may occupy a distinct region within the mixing space.
A comparison of the overall urban mixing space with 10 x 10 km subsets taken from
the center of each urban area indicates that this is not the case. Figure 4.7(b) shows
the spectral diversity of these 10 x 10 km urban subsamples (grays) superimposed on
the overall mixing space (white). This is shown even more clearly in the color ver-
sion of the figure available at www.LDEOQ.columbia.edu/~small/Urban/UrbanMap.
Although there is clearly some central tendency to individual urban centers, most of
the individual centers span a wider range of spectral diversity than the extent of the
core suggests. It appears to be an emergent characteristic of the aggregation of all the
cities rather than a characteristic of any one of them.

Another characteristic of many of the cities is a radial vegetation density gradi-
ent spanning from the dark core to its periphery. A vegetation abundance gradient
is present, to varying degrees, in most of the cities but varies widely in form and
magnitude. The appearance of a gradient is enhanced in cities surrounded by dense
vegetation in the form of nonurban forest or agriculture (many of them), but can
be verified in the spectrally heterogeneous built area with vegetation fraction maps
(Small, 2005). To some extent, the vegetation gradient also corresponds to dark frac-
tion diminishing radially outward from the core(s). This could result from increasing
distance between buildings allowing more illumination (both direct and scattered) of
the street level land cover between buildings casting shadows. In temperate environ-
ments, increased open space between buildings is often accompanied by increasing
density of trees — both tended and in residual fragments not developed (e.g., riparian
corridors and rugged topography). At the peripheries of many cities the abundance of
untended herbaceous vegetation in open spaces also results in increased vegetation
fraction at the 30-m pixel scale.

4.6.3 PriNcIPAL CONCLUSIONS AND IMPLICATIONS

1. Qualitative comparison of 30 diverse cities in Landsat ETM+ imagery sug-
gests that intraurban spectral diversity is comparable to interurban diversity.
2. Urban cores are generally darker than peripheries — but are still spec-
trally diverse and do not have a consistent reflectance signature. Cores are
generally darker because of pervasive shadowing resulting from canyons
and building height variations, but low albedo roofing and asphalt paving
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contribute by absorption of direct and scattered illumination. Urban can-
yons are light traps.

3. The urban periphery is generally fractal and gradational making unam-
biguous identification difficult on the basis of spectral properties alone.
Gradational transitions in reflectance between the urban core and periphery
are apparent in most cities but are not isotropic or monotonic in all direc-
tions. Discrete urban boundaries are rarely discernable at moderate spatial
resolutions. This suggests that cities might be more accurately represented
as continuous physical entities rather than discrete thematic entities.

4. Comparison of composite Landsat ETM+ spectral mixing spaces shows
that urban spectral diversity approaches global spectral diversity in terms
of fundamental physical endmembers. The overall topology of the primary
mixing space is the same and the primary SVD endmembers are nearly
identical but the internal structure is substantially different. Several distinct
mixing continua are discernable within the nonurban mixing space. The
urban mixing space is dominated by a single central mode confirming the
dominance of mixed pixels.

5. The most consistent urban spectral characteristic is heterogeneity — par-
ticularly at spatial scales coarser than 20 m. Relative to nonurban land cov-
ers, urban spectra are more spatially compositionally heterogeneous at both
subpixel and multipixel scales.

6. Pervasive multiscale spectral heterogeneity precludes accurate urban extent
mapping on the basis of spectral consistency of specific reflectance signatures.
The combination of spectral diversity and heterogeneity results in spectral
ambiguity (nonuniqueness), which leads to classification error. Spectral ambi-
guity is generally unavoidable because cities are composed of materials often
spectrally indistinguishable from nonurban land cover. The combination of
spectral mixing and spectral heterogeneity further complicates the problem.

4.7 QUESTIONS

The observations discussed above raise several questions relevant to urban mapping
and monitoring with optical imagery.

Might aggregate urban land cover have invariant spectral properties?

In spite of the spectral diversity and heterogeneity present at multiple scales, does
the aggregate of this diversity have any emergent spectral properties that may be
invariant to differences in illumination and view angle? If so, they may be very
difficult to discern with broadband imagery but the higher spectral dimensionality
provided by hyperspectral imagery may capture them. A comparative multitemporal
analysis of even moderate resolution hyperspectral imagery may be able to isolate
such properties from a manageably small number of cities.

Can spectral mixing spaces be generalized to higher dimensional parameter spaces
to incorporate nonspectral and nonphysical dimensions of urban dynamics?
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Increasing availability of geospatial data makes it possible to relate physical and
nonphysical parameters to each other on the basis of spatial location. The concepts and
analyses used to understand reflectance properties of the urban mosaic could be extended
to nonspectral, or even nonphysical dimensions (e.g., Small, 2004b). To some extent,
this has been done in different disciplines for many years but not necessarily linked by
geographic location. The mathematical and geometric tools used to manage the curse
of dimensionality with optical imagery may provide useful approaches to understand-
ing other processes related to the diversity of the urban environment. Might the high-
dimensional parameter space provide a basis for linking physical, socioeconomic, and
perhaps cultural and historical dimensions of urban evolution and dynamics?

What is urban?

Can urban areas be defined on the basis of physical criteria? If so, which criteria
might be detectable in optical imagery and under what conditions? Defining urban
environments in terms of physical criteria would facilitate systematic, multiscale
global mapping of not only urban extent, but also its physical properties. The benefits
of a systematic, multiscale, quantitative depiction of the physical properties of urban
environments worldwide could significantly advance our understanding of urban
meteorology, hydrology, and ecology. If this mapping could be applied to the vast
archive of moderate resolution imagery, it may be possible to conduct quantitative
change analyses to extend urban mapping into the time dimension. Applying such
an analysis to the 25+-year archive of Landsat imagery could provide a quantita-
tive physical depiction of the process of urban evolution worldwide. However, many
important questions about urban dynamics are not related to physical properties, so
additional criteria are essential to developing a “universal” mapping of urban areas.
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5.1 INTRODUCTION

More than 50% of the Earth’s population now lives in cities. Cities consume enor-
mous resources, the by-products of urban activity and land use are numerous (Foley
et al., 2005), and a variety of recent studies demonstrate that the ecological foot-
print of many cities is significant and not sustainable (Rees and Wackernagel, 1996;
Kareiva et al., 2007). Cities are also emerging as an important source of uncertainty in
regional- to global-scale biogeophysical processes in the climate system. For example,
the impact of urban areas on atmospheric chemistry and aerosols is both pronounced
and well documented (Atkinson, 2000; Arnfield, 2003). Urban land use influences
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local to regional climates through urban heat islands (Oke, 1982; Zhou et al., 2004),
with concomitant impacts on human health (Patz et al., 2005) and ecosystems (Zhang
et al., 2004; Alberti, 2005), and recent evidence has suggested that cities may also
significantly affect local precipitation regimes (Kalnay and Cai, 2003; Kaufmann et
al., 2007). At larger scales, recent studies have demonstrated that accurate representa-
tion of urban land use is both important and poorly captured in current models (Jin et
al., 2005; Feddema et al., 2006; Oleson et al., 2008). As the global population grows
and societies in developing countries become more urbanized, the environmental
impact of cities will become even more pronounced (Mills, 2007; Grimmond, 2007).
Accurate and timely information related to the global distribution and nature of urban
areas is therefore critical to a wide array of environmental and geophysical research
questions related to the effect of humans on the global environment (Sala et al., 2000;
Peters-Lidard et al., 2004; Kaye et al., 2006; Pataki et al., 2000).

Despite the acknowledged and growing importance of urban land in local- to
global-scale environmental processes, our understanding of urban dynamics has
been limited by a lack of reliable and accurate data on the distribution and extent of
built-up land at the global scale. The datasets that have emerged to fill this gap (e.g.,
LandScan, Dobson et al., 2000; Nighttime Lights, Elvidge et al., 1996, 2001, among
others) suffer from a number of limitations. In particular, these maps differ by as
much as a factor of 5 in their estimate of total urban area (Potere and Schneider,
2007). Furthermore, the majority of these datasets represent population distribution
or urban locations, but none represent impervious surface or built-up land.

In this chapter, we present results from recent efforts to produce a new global map
of urban land based on a new approach that uses remotely sensed data in association
with a global stratification that captures regional variation in the nature and form
of urban land use.* This work builds on our past efforts using Moderate Resolution
Imaging Spectroradiometer (MODIS) data at 1-km spatial resolution (Schneider
et al., 2003, 2005), which is included as part of the MODIS Collection 4 Global Land
Cover Product (Friedl et al., 2002) and has been used for applications ranging from
environmental modeling (Jin et al., 2005; Mu et al., 2008) to agricultural assessment
(Ellis and Ramankutty, 2008) to disease monitoring (Hay et al., 2006). The goal of
producing this new map is to address several key deficiencies in the Collection 4
map arising from urban land use in mixed pixels, and confusion between built-up
areas, bare ground, and shrublands. To this end, the new global urban land extent
data set described in this chapter was produced using newly released Collection 5
MODIS data circa 2001-2002 with increased spatial resolution (463.3 m). As part
of this effort, we developed a new strategy based on a typology of “urban ecosys-
tems” designed for this research. Comparison of the MODIS Collection 5 map with
other available sources of information on urban land extent indicates good agree-
ment, and more importantly, significant improvement relative to the Collection 4
data set. Using a unique, high-resolution data set that includes 135 cities, we have

* The MODIS map of urban extent at 463.3 m spatial resolution is available at National Aeronautics
and Space Administration’s Land Processes Distributed Active Archive Center, http://edcdaac.usgs.
gov/dataproducts.asp and from the University of Wisconsin’s Center for Sustainability and the Global
Environment, http://www.sage.wisc.edu.
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completed a geographically comprehensive assessment of map quality and accuracy.
Our results show that the new Collection 5 data set has a mean overall accuracy
of 93% (k = 0.65) across the sample, a significant improvement over the Collection 4
map (88%, ¥ = 0.49) and other global urban map sources (73-90%, x = 0.28—0.49).

5.2 BACKGROUND: GLOBAL MAPPING OF URBAN AREAS

Urban land use is both highly diverse and poorly defined at global scales. For many
years, the only available global urban datasets were the Digital Chart of the World
(DCW) urban layer (Danko, 1992) based on VMAPO, a collection of digitized navi-
gational charts from the 1950s to the 1970s, and maps derived from the Defense
Meteorological Satellite Program’s “low light” sensor, or nighttime lights data
(Elvidge et al., 1996, 2001). Because of the perceived difficulty of mapping urban
areas, most global land cover maps exploited the DCW information [including the
Advanced Very High Resolution Radiometer (AVHRR)-based Global Land Cover
Characteristics Database (Loveland et al., 2000), the AVHRR Land Cover Map
(Hansen et al., 2000), and the MODIS Vegetation Continuous Fields Dataset (DeFries
et al., 2000)] despite the outdated, inconsistent nature of the data. During the past
decade, however, several teams have created global maps of contemporary urban
areas. In part because of the complexity of the label of urban land use, each group
has approached this task from a different perspective, using methodologies that draw
on a pool of remote sensing imagery, census information, geographic information
systems (GIS) data layers, and other global maps.

Our previous efforts to inventory urban land use at a global scale resulted in the
first global data set to use daytime multispectral remote sensing data (Schneider et
al., 2003, 2005). Our methodology relied on a data fusion approach that combined
I-km MODIS data with additional remote sensing sources. Recently, two new land
cover maps with explicit representation of urban areas have been developed using
moderate spatial resolution satellite imagery: Global Land Cover 2000, based on
Satellite Pour I’Observation de la Terre (SPOT4)-VEGETATION data (Bartholome
and Belward, 2005); and GlobCover, developed from Medium Resolution Imaging
Spectrometer data (JRC, 2008). Because GLC2000 was a joint effort by 18 regional
teams, treatment of urban land is not consistent across regions (Potere and Schneider,
2007; Potere et al., 2008). GlobCover also uses a distributed approach with similar
regional inconsistency in urban areas (e.g., urban extent in Eastern Australia covers
more ground than all of the urban land in North America).

In parallel with these remote sensing-based efforts, several global datasets have
been generated from population-based data on distribution and density and radiance-
calibrated nighttime light data, including LandScan (Dobson et al., 2000; Bhaduri et
al., 2002) and the Global Rural-Urban Mapping Project (GRUMP; Balk et al., 2006).
In addition, two derivative global maps have been produced from LandScan data: the
Global Impervious Surface Area Map (IMPSA; Elvidge et al., 2007) and the History
Database of the Global Environment (HYDE; Goldewijk 2001, 2005). IMPSA uses
LandScan and radiance-calibrated nighttime lights data to model “impervious surface
area” globally, whereas HYDE integrates LandScan population density with United
Nations (UN) national urban population estimates and assumptions about mean urban
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population densities. Despite these efforts and the availability of new datasets, there is
still no comprehensive global urban database that offers the detailed information req-
uisite for environmental modeling (e.g., detailed subpixel information on impervious
surface, urban vegetation extent and type, etc.). Furthermore, there is significant dis-
agreement across these maps and few of the data sources described above have under-
gone rigorous validation. The goal of this work is to address some of these limitations
by creating a new, accuracy-assessed global data set of urban land use based only on
high-quality remote sensing data sources. In addition to the assessment of quality and
accuracy undertaken here, we have completed a detailed examination of map differ-
ences across all available global urban maps, as outlined in Chapter 13 of this volume.

5.3 METHODS

5.3.1 SuperviseD CLASSIFICATION oF MODIS Data

The classification methodology for this research uses a 1-year time series of data to
exploit spectral and temporal differences in land cover types (Strahler et al., 1999;
Friedl et al., 2002). The MODIS data inputs are 8-day composites of the seven land
bands and the enhanced vegetation index (Huete et al., 2002) for 1 year (February
18, 2001-February 17, 2002) at 463.3 m spatial resolution. All input data are adjusted
to a nadir-viewing angle to reduce the effect of varying illumination and viewing
geometries (Schaaf et al., 2002). In addition, monthly and yearly minima, maxima,
and means for each band are included.

The classification algorithm is trained using 2190 training sites ranging from 1 to
100 km? in area, classified according to the International Geosphere-Biosphere 17
class system (Belward and Loveland, 1997). Each site is obtained by manual inter-
pretation of Landsat data, and is assessed for interpretation errors by two or more
analysts (Friedl et al., 2002). A set of urban training sites was selected from 182
cities located across the globe using the criteria that a given area must be dominated
by urban and built-up areas (specifically, >40% coverage of industrial, commercial,
residential, and transportation-related land use).

The specific approach for mapping urban areas globally relies heavily on methods
developed for the Collection 4 MODIS urban map at 1-km resolution (Schneider et
al., 2003, 2005), with a few key differences. At the core of our previous methodol-
ogy is a supervised decision tree algorithm (C4.5). For classification problems where
large datasets are used and the information content is complex (e.g., nonlinear relations
between features and classes) and may contain errors or missing data, decision trees
provide an effective and efficient solution (Fayyad and Irani, 1992; Friedl and Brodley,
1997). Decision tree construction involves the recursive partitioning of a set of training
data, which is split into increasingly homogeneous subsets based on statistical tests
applied to the feature values (here, the satellite data values). Class labels are assigned to
each observation based on its assignment at the terminal leaf node; however, a certain
amount of “pruning” is also conducted to correct for overfitting of the training data.

To improve classification accuracy, the decision tree algorithm is used in con-
junction with a technique called boosting, which improves class discrimination by
estimating multiple classifiers while systematically varying the training sample. The
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final classification is then produced by an accuracy weighted vote across all of the
classifications (Quinlan, 1996). In addition, boosting can also be used to estimate
probabilities of class membership for each class at every pixel. These land cover
class probabilities — rather than the traditional “hard” class label — are an impor-
tant component of our methodology. To fully exploit the information content in the
probabilities, the classification algorithm is run twice: once with all land cover exem-
plars (including urban sites) and once with the urban training sites removed. As
a result, information from the second classification (without urban sites) produces
a reliable estimate of the “second most probable land cover class.” These second-
ary probabilities are then used to modify the original urban probabilities in regions
where confusion between classes occurs.

Despite using the same core algorithm, our new approach for the Collection 5
data differs from the Collection 4 methodology in several key ways: (1) no external
datasets (population density, nighttime lights, etc.) are used to constrain the classi-
fication; (2) postprocessing of the land cover probabilities incorporates information
derived from other MODIS-based maps and spectral indices in a data fusion step
based on Bayes’ rule; (3) postclassification processing is conducted region by region
(with region-specific parameters and thresholds), based on a set of urban ecoregions
designed for this research; and (4) the training database has been expanded and thor-
oughly updated for application to the Collection 5 MODIS data.

5.3.2 URBAN ECOREGIONALIZATION

The key element of the new methodology is a global stratification of the Earth’s land
surface based on the natural, physical, and structural components of urban areas.
Although urbanized areas are some of the most complex and heterogeneous land-
scapes in the world, research within urban studies, urban ecology, and land change
science has shown that there is a surprising regularity in city structure, configura-
tion, constituent elements, and vegetation types within geographic regions and by
level of economic development (Angel et al., 2005; Schneider and Woodcock, 2008).
The approach here exploits these local similarities to approximate regionally homo-
geneous areas that we term “urban ecoregions” (Figure 5.1, Table 5.1). This typology
applies early ideas from Brady et al. (1979) and Pickett et al. (2001) on the physical,
cultural, and social elements of cities. We further develop these concepts and apply
them for the first time in a spatially explicit format at the global scale.

These urban ecoregions provide a global stratification for efficient data analysis
and prioritization of training site selection, and also provide a framework for assess-
ing map quality and accuracy. This stratification can also facilitate future research
on urban expansion, urban ecosystem dynamics, and the contribution of urban sys-
tems to global environmental change.

To define the urban ecoregions, we start with the terrestrial ecoregions outlined
by Olson et al. (2001) to identify broad climatic and biogeographic divisions that
influence urban and peri-urban vegetation type and phenology. We then differenti-
ate 16 urban ecoregions based on regional similarities in urban structure, histori-
cal development trajectory, level of economic development, vegetation patterns, and
agricultural systems (Table 5.1). This step is completed within a GIS using expert
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TABLE 5.1
Key Features of the 16 Urban Ecoregions
Ecoregion No. Geographic Region Example Areas
Temperate broadleaf, 1 North America, Japan, Australia  Eastern United States, Canada
mixed forests
2 Europe, Japan Germany, France, Japan
3 Eastern Asia Eastern China
Temperate grassland, 4 North America, South America, Central U.S., Mexico,
shrubland Central Asia, Australia Argentina, Australia
5 Middle East, Central Asia Turkey, Georgia
Tropical broadleaf forest 6 South America Brazil, Colombia, Guatemala
7 Sub-Saharan Africa Democratic Republic of the
Congo
Tropical-subtropical 8 South-central, southeast Asia China, India
mixed forest
Tropical-subtropical 9 South America Southeastern Brazil, Paraguay
savannah, grasslands
10 Sub-Saharan Africa Ghana, Kenya, Tanzania,
Angola
Tropical-subtropical 11 South America, southern Africa  Chile, Peru, South Africa
grasslands
Mediterranean 12 North America, southern California, Italy, Spain,
Europe, northern Africa Portugal
Arid, semi-arid desert 13 Africa, Middle East, Central Sahara Desert
Asia, Australia
Arid, semi-arid steppe, 14 Central Asia Western China
shrubland
Boreal forest, tundra 15 North America, northern Europe, ~ Canada, Russia
northern Asia
Permanent ice, snow 16 North, South Pole Antarctica

knowledge gathered from urban researchers, practitioners, and an extensive review
of the urban studies literature (Schneider, 2005). Additional information was incor-
porated into our decision criteria from agricultural maps (Ramankutty et al., 2008),
economic data (UN, 2005), and maps of geopolitical regions defined by the UN
(2007).

Using this stratification, results from the supervised classification were processed
on an ecoregion-by-ecoregion basis. For each stratum, classification results were
visually assessed against available current data sources on urban areas (Google
Earth, etc.). In temperate ecozones dominated by farmland, for example, little post-
processing was necessary. In arid and semiarid regions, however, urban areas were
often confused with either shrubland or agriculture, and prior information from the
land cover probabilities was used to resolve these issues. Accordingly, our regional
postprocessing methods included: estimation of posterior probabilities using Bayes’
rule in conjunction with prior information derived from the land cover probabilities,

© 2009 by Taylor & Francis Group, LLC



114 Human Settlement: Experiences, Datasets and Prospects

masking of problem areas using thresholded class probabilities (e.g., include urban
if P, > 0.75), application of the MODIS 463 m water mask, and hand editing (for
details, see Schneider et al., 2008a, 2008b).

5.4 RESULTS

5.4.1 QUALITATIVE ASSESSMENT

Figure 5.2 illustrates the results of the new MODIS Collection 5 map of urban extent
(hereafter the MODIS 463 m map) for the Washington, D.C.—Baltimore urban corri-
dor. For comparison, the same region is shown for a Landsat-based 30 m classification
(Figure 5.2(a)), the previously released MODIS-based map at 1 km (Figure 5.2(c)), and
two independent datasets, the Nighttime Lights data (Figure 5.2(e)) and the IMPSA
map based on Landscan and Nighttime Lights data (Figure 5.2(f)). The pattern of
urban land in Washington, D.C. (southwest corner of the image) and Baltimore (north-
east corner) is similar across all maps, with two exceptions. First, the results of the
MODIS 463 m map provide far more detail on the edge of the city as well as within
the urban fabric compared to the other coarse resolution sources. The green areas
within Washington, D.C., for example, highlight the improved spatial resolution of the
data (these areas correspond to vegetated parks), and the general urban morphology is
in good agreement with the high-resolution map (Figure 5.2(a)). Second, the blooming
effect of the light emissions (Figure 5.2(e)) masks important ground-based features;
this artifact is also discernible in the IMPSA map, primarily in the small towns out-
side the heart of the city (Figure 5.2(f)). As a result, several small, urbanized clusters
in the southernmost part of Figure 5.2(e) and (f) show less spatial detail and a more
clumped appearance relative to the MODIS-based results in Figure 5.2(b). A similar
loss of detail is apparent in the suburbs southwest of Baltimore: the nighttime lights-
based maps characterize these areas as nearly continuous stretches of urban land.
Regionally, our results reveal that previous estimates of urban extent (typically
2-3%) drawn from global maps made from coarse-resolution data (1-2.2 km resolu-
tion) may overestimate the true extent of built-up areas. Although still a brushstroke
estimate of urban development, the MODIS 463 m map shows that urban land as a
percentage of total land area varies from 0.17% in Africa to 0.67% in North America,
with most regions near the global average of 0.5% urbanized (e.g., South America,
0.47%; Asia, 0.53%). The exception is the European landmass (1.78% urbanized), a
result that is to be expected given the extensive urban morphology in this region.

5.4.2 QUANTITATIVE AsSESSMENT OF CITy SizE

To overcome the challenges associated with assessing accuracy at a global scale,
we compare estimates of urban extent at the scale of the city. To do this, estimates

FIGURE 5.2 (Opposite) (See color insert following page 324.) A comparison of maps
for the Washington D.C.—Baltimore, Maryland conurbation depicting (a) a Landsat-based
classification (30 m), (b) the MODIS-based classification (463 m resolution), (c) the prior ver-
sion of the MODIS-based map (1 km resolution), (d) sub-pixel “urban intensity” from 463 m
MODIS data, (e) nighttime lights data, and (f) NOAA’s impervious surface area map.
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of city size are derived from a global, geographically comprehensive, stratified
random sample of 135 Landsat-based classifications (30 m resolution) of urban
land (Schneider, 2005; Angel et al., 2005; Schneider and Woodcock, 2008). These
135 maps are independent of the training exemplars used during classification of
the MODIS 463 m map, and are assumed to be accurate and valid depictions of
on-the-ground urban extent. The cities in the sample range in size from 20 to 5250
km?, with the extent of each city’s study area defined by the municipal boundaries
of the city (see Figure 5.1 for the city sample distribution).

Figure 5.3 illustrates how the estimates of urban size (on the x axis) compare
to estimates obtained from the MODIS 463 m map and the five global urban map
sources (on the y axis, MODIS 1 km, GLC2000, GlobCover, IMPSA, and GRUMP).
The results show that the MODIS 463 m map has the best agreement (Figure 5.2(a)),
and the lowest root mean square error (RMSE), 142.6m, when compared against
the other sources. Three of the global maps (Figure 5.3(b), (e), (f)) systematically
overestimate urban extent across the range of city sizes in the sample (20-5250 km?).
The two remaining maps (Figure 5.3(c) and (d)) have values that cluster around the
1:1 line, but have a high degree of variability and a large number of outliers that
reveal how frequently these sources under- or overestimate true city size. The RMSE
for these two maps corroborates this finding, with values two to three times higher
(288.6 and 344.9, respectively) than the MODIS 463 m map.

Figure 5.3(a) shows that the MODIS 463 m map tends to slightly overestimate city
size. Despite the increased detail afforded by a fourfold increase in areal resolution
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FIGURE 5.3 Scatter plots of the 135 cities in the validation sample, where each plot shows
the city size from the high-resolution Landsat-based maps (x-axis, assumed to be “truth”)
against one of the global urban maps (y-axis). Note the log scale on both axes.
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(from 1 km to 463 m), the pixel size is often too coarse to differentiate distinct urban
features (roads, buildings) from agriculture and other land cover types within the
pixel. Because of this subpixel heterogeneity, modest overestimation of true areal
extent of urban land is expected. The degree of subpixel mixing is explored more fully
in Figure 5.5, as well as by Schneider et al. (2008b), who also provide region-specific
equations to adjust the MODIS 463 m map areal extent to on-the-ground estimates.

5.4.3 ASSESSMENT OF MAP AGREEMENT AT MULTIPLE SPATIAL SCALES

To further assess the quality of the 463 m map, the high-resolution maps were resa-
mpled to coarser spatial resolutions (300 m—1 km) and compared to the global maps to
estimate the degree of agreement among them. The confusion matrix results are sum-
marized in Figure 5.4, where box plots convey the mean, median, and range of values
for Cohen’s kappa, and producer’s and user’s accuracies across the 135-city sample.

MODIS 463 MODIS 463 swed— [}
MODIS 1k MODIS 1knft e |————{— 1
IMPSA IMPSAYf wae [ —A -
GLC 200 GLC 200 i—_—i ]
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(b) Cohen’s Kappa Statistic

MODIS 463 MODIS 463 —+——
MODIS 1 k MODIS 1k |_-_| i
IMPSA IMPSA{} | - {4
GLC 200 GLC 2004} + |—-_| J
GlobCove GlobCove [ }—-—| 4
GRUM GRUM } - } ]

(c) Producer’s Accuracy (1-Omission) (d) User’s Accuracy (1-Commission)

FIGURE 5.4 Box plots of accuracy statistics for the MODIS 463 m map and five additional
global urban maps using the 135 city validation sample. The figure shows four measures to
assess the accuracy of the global urban maps at the scale of the city: (a) overall accuracy, (b)
Cohen’s kappa statistic, (c) producer’s accuracy (or sensitivity), and (d) user’s accuracy (or
specificity). The six global urban maps shown along the y-axis are the MODIS-based maps
of urban extent at 463 m and 1 km spatial resolution, NOAA’s impervious surface area map
(IMPSA), global land cover 2000 (GLC 2000), the recently released GlobCover map, and
CIESIN’s Global Rural-Urban Mapping Project (GRUMP).
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FIGURE 5.5 Plots of urban land densities (i.e., sub-pixel mixing) in the sample of valida-
tion cities for three urban ecoregions: (a) temperate broadleaf forests in North America; (b)
tropical-subtropical mixed forests in Asia; and (c) arid, semi-arid desert areas. The plots
show the distribution of urban land densities that correspond to areas mapped as “urban”
in the MODIS 463 m map. Each bin along the x-axis contains the number of MODIS urban
pixels whose corresponding truth values (derived from the high resolution city maps) fall in
a given range (0, 1-5, 6-10, etc.); this value is normalized by the total number of true urban
pixels for that bin. This percentage (y-axis) is, in effect, the percent of pixels correctly clas-
sified for that density range.

The overall accuracy is generally high across all map sources (Figure 5.4(a)),
with mean accuracy rates ranging from 73% (GRUMP) to more than 93% (MODIS
463 m map). The MODIS 463 m map has the highest accuracy, the lowest standard
deviation (+4.5%, as compared to +7.2% or greater in the other maps), and the fewest
outliers below 75%. Four of the maps — the original MODIS 1 km map, IMPSA,
GLC2000, and GlobCover — have mean overall accuracy rates clustered together
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in the 90% range (89.0-91.1). Of this group, the MODIS 1 km map displays the
most outliers below the mean. This result underscores the degree of improvement
provided by the Collection 5 MODIS data and the new region-based methodology.
Differences among the maps are also clearly summarized in the kappa statistic: the
MODIS 463 m map has the highest mean and median kappa values (0.65), whereas
IMPSA, GlobCover, GLC2000, and MODIS 1 km have kappa values ranging from
0.38 to 0.50, and GRUMP has the lowest mean kappa, k = 0.28.

The user’s and producer’s accuracies (bottom row, Figure 5.4) provide additional
details about the quality and accuracy of the maps. Producer’s accuracy character-
izes the error of omission, or the sensitivity of the map. Producer’s accuracy reveals
errors incurred when the classified map effectively misses an area of urban land, or
in other words, the map does not label a true built-up area as “urban.” Figure 5.4(c)
shows the distribution of producer’s accuracies across the coarse resolution urban
maps. Two of the maps (IMPSA and GLC2000) have mean and median values lower
than 50%, which indicates that these datasets are missing developed land in their
classifications. This result is somewhat alarming, given that the sample data set only
includes cities with substantial populations (more than 200,000) and more than 50
km? of urban land. GRUMP, on the other hand, has a producer’s accuracy higher
than the rest, at nearly 90%. It is important to point out that, although GRUMP does
not miss many true urban pixels, the map has a large number of erroneously labeled
pixels evident from its low overall accuracy and user’s accuracy.

User’s accuracy, on the other hand, reflects the error of commission, sometimes
called map specificity. This measure reveals the number of pixels erroneously labeled
as urban land. The distribution of user’s accuracies (Figure 5.4(d)) mirrors the results
of the overall accuracy measure (Figure 5.4(a)): the MODIS 463 m map has the highest
user’s accuracy (72.9%), with GLC2000 and IMPSA close behind (65.6% and 64.8%,
respectively), followed by MODIS 1 km (59.1%), GlobCover (54.2%), and GRUMP
(28.1%). In general, the user’s accuracies are lower than the producer’s accuracies
because of difficulties involved in mapping urban land use using moderate resolution
data on the edge of cities or in heterogeneous inner city areas relative to high-resolution
data. The fact that the MODIS 463 m map has the highest user’s accuracy indicates
that this map has the fewest pixels across the sample mistakenly labeled urban land,
and fewer mislabeled edge pixels due to the increased spatial resolution of the data.

Although overall accuracy is often used as a standard indicator of map quality, the
kappa statistic is also widely used for this purpose (Cohen, 1960). Indeed, many contend
that kappa provides a better overall measure than simple overall accuracy (Allouche
et al., 2006; Foody, 2007). Differences among the maps are clearly summarized in the
kappa statistic: the MODIS 463 m map has the highest mean/median kappa values
(0.65), whereas IMPSA, GlobCover, GLC2000, and MODIS 1 km have kappa values
ranging from 0.50 to 0.38, and GRUMP has the lowest mean kappa of 0.28.

5.4.4 EvALUATION OF SuBPIXEL MIXING

One final way to evaluate the quality of the MODIS 463 m map is to use the urban
ecoregion typology to understand regional trends in how well areas with different
densities of urban land are classified. Our goal here is to exploit the high-resolution
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city maps to determine the density of urban land at which the MODIS 463 m map
labels a pixel as “urban.” To derive subpixel urban land densities, the high-resolution
city-level maps were resampled and coregistered to the MODIS 463.3 m grid. Using
this grid, the percentage of each cell covered by urban land was computed from the
high-resolution map. To summarize these results, we compare the number of 463 m
urban pixels with the urban density estimated from the high-resolution data, strati-
fied into 20 groups (0%, 1-5%, 6—-10%, etc.).

The results for three urban ecoregions are shown in Figure 5.5. Individual cities
are shown by dashed lines and the regional mean and standard deviation are shown by
the heavy lines and error bars. The number of MODIS urban pixels is normalized by
the total number of true urban pixels (from the high-resolution classification) for each
density level (or “bin”); this step allows cities of widely different sizes to be compared
on the same scale. In this assessment, this normalized value along the y axis can be
considered the percent of pixels correctly classified for that density range. These plots
exemplify three significant patterns. First, each plot displays a distance decay function
moving outward from the city center (from the far right of the x axis to the left). The
MODIS 463 m map does a good job of capturing areas with 70-100% developed land
as “urban.” For the 70—100% density bins (x axis), the values on the y axis range from
80% to 100% in Figure 5.5(a), 75-98% in Figure 5.5(b), and 65-90% in Figure 5.5(c).
As expected, when subpixel urban land densities drop below 50%, the MODIS 463 m
has more varied results with anywhere from 10% to 60% of low-density pixels char-
acterized as urban land. This reflects the definition used to define urban land cover in
the training data (i.e., areas with at least 40% developed land).

The second important trend in Figure 5.5 is the difference in the shape of the
curve in cities from different regions: the curve shown in Figure 5.5(a) is sigmoidal in
form, whereas those in Figure 5.5(b) and (c) are more linear. This result suggests that
the map is better at correctly identifying mid-density pixels in temperate ecoregions
than in tropical-subtropical or arid-semiarid parts of the world, and echoes the results
of the class probabilities from the boosted decision trees, which showed a high level
of accuracy before the postprocessing step. In addition, these differences suggest that
the urban signal is relatively easy to discern in these regions. The third and final trend
is that cities in temperate ecoregions (dashed lines) show less variability about the
mean than cities in the other two divisions. It is interesting that the greatest variabil-
ity in this regard occurs in the midrange density values (roughly 40—80%). However,
the results also suggest that — even in regions where it is difficult to map urban
land — there is a great deal of consistency in how the MODIS 463 m map depicts
densely urban areas (80—100% urban) and low density areas (0—20% urban).

5.5 DISCUSSION AND CONCLUSIONS

Urban areas are an increasingly important part of the global environment, and yet
they remain one of the most challenging areas for conducting research. The applica-
tion of standard measurements and models is particularly difficult given the complex
three-dimensional structure of the city; the mixture of surface types with contrast-
ing radiative, thermal, and moisture characteristics; and the complex atmospheric
chemistry in these regions. Despite these challenges, researchers and practitioners
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are pursuing new frameworks and models that incorporate urban land/land cover
change. Because urban and nonurban areas may have different sensitivities to climate
change, for instance, it is possible that the true effect of these changes will only be
understood if urban areas are explicitly modeled in climate change simulations. It is
therefore essential that maps of urban land use not only display the point location of
cities or the spatial distribution of population, but also provide up-to-date informa-
tion regarding the extent, growth, and physical characteristics of urban land.

This paper presents a new, global, moderate resolution map of urban extent circa
2001-2002, with several significant improvements over currently available map sources.
The increased spatial resolution and radiometric quality of the MODIS Collection 5 data
(463.3 m) has allowed us to map urban land with a fourfold increase in spatial detail.
This analysis also presents the first global validation effort performed for any of the
currently available global urban maps, and provides important information to the user
community on the quality and suitability of this map for a range of environmental sci-
ence applications. Our assessment shows that the MODIS 463 m map provides the most
realistic depiction of global urban land use among the available datasets. Moreover, our
research has shown that assessment of accuracy for a small-area class such as urban
land should rely on a full suite of measures estimated across local, regional, and global
scales. Due to space limitations, this chapter presents only a portion of our analysis (see
Schneider et al., 2008b; Potere et al., 2008; and Chapter 13 of this volume).

As part of our approach to monitoring urban areas globally, we have defined a
new set of urban ecoregions. This new, spatially explicit map of urban ecoregions
is a significant step toward understanding the urban environment on a contextual,
regional basis. Because of the consistencies in urban structure, layout, building sizes,
materials, vegetation types, and phenology, this new typology can be used to assign
or differentiate important parameters of the urban environment (e.g., sensible and
latent heat flux, etc.). This provides improvement over parameter assignment based
on a single global value. Moreover, the use of urban ecoregions provides a frame-
work for handling a global data set quickly and efficiently by exploiting the seasonal
and land cover similarities of each region and developing region-specific methods to
handle problematic areas. In this context, our methodology for the MODIS 463 m
map incorporates analyst expertise within a fully automated classification algorithm,
which we feel is a necessary approach for the successful characterization of a small,
heterogeneous, and difficult-to-map class such as urban areas.

Moving forward, the datasets described in this chapter provide a foundation for refined
representations of global urban land use. In particular, our ongoing efforts are focused
on (1) creating updated maps of urban extent for the period 2002—2007 (corresponding
to the years of available Collection 5 data) on a once-per-year or every-other-year basis;
(2) creating global maps that provide subpixel estimates of urban land use (preliminary
results for this type of “urban intensity” map are shown in Figure 5.1(d)) that correspond
to percent impervious surface; and (3) rounding out the suite of land surface character-
istics for urban areas by producing maps of the type and percent coverage of vegetation
within urbanized areas. In addition, we hope to build on these results to create a globally
consistent, validated map of land cover change in and around cities. Information on the
rates and patterns of growth in urban areas has important implications for models and
studies that require information related to the role of humans in the global environment.
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6.1 INTRODUCTION

Urban places may be broadly defined as settlements where most people live and
work. Human beings worldwide tend to cluster in spatially limited habitats occupy-
ing less than 5% of the world’s land area. The density of infrastructure — or “urban-
ness” — can be viewed as a continuum ranging from wilderness at one extreme to
central business districts at the other extreme (Weeks, 2004). Because of their key
role in sustaining human civilization and their impact on the environment, there is
substantial interest in global mapping of human settlements and updating such maps
on a routine basis.

Satellite sensors provide one of the few globally consistent and repeatable sources
of observations. In the environmental sciences, satellite data have proven crucial
for global mapping and global assessment of processes such as deforestation. Fewer
applications for satellite data have been developed in the social and economic sci-
ences. In part, this can be attributed to the fact that most Earth observation satellite
sensors are optimized for observation of natural phenomena (e.g., the movement
of clouds and the characteristics of the land and sea surface) that are not directly
related to socioeconomic measures such as population density, living conditions, and
economic activity. The physical structures of urban areas produce distinctive spatial
and spectral signatures that are recorded by many types of remotely sensed data.

129
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However, no satellite sensor has been designed and flown specifically for mapping
and monitoring urban areas.

With moderate (1050 m) resolution imagery, it is possible to map the extent
of urbanized land and delineate basic urban classes such as commercial/industrial,
residential, and open areas such as parks with reasonable accuracy. With high spatial
resolution imagery (~1 m), it is possible to outline individual buildings and with ste-
reo imagery estimate the volumes of individual structures.

To date, an openly accessible global urban map has not been produced from
moderate- or high-resolution satellite imagery. Although it is possible to collect a
sufficient quantity of cloud-free moderate resolution imagery for such a map in a
single year, the generation of an urban map from sources such as Landsat is compli-
cated by the lack of a uniform spectral or spatial signature for urban areas (Small,
2005). Collection and processing difficulties combine to frustrate the production of
a global urban map from high spatial resolution satellite imagery. As a consequence,
the present state of global urban mapping is much more modest, with most prod-
ucts simply attempting to depict the outline of the developed area at or near 1-km
resolution.

Among the data sources regarded as most promising for global urban mapping
are the observations of nighttime lights. The widespread use of such lighting is a
relatively recent phenomenon, tracing its roots back to the electric light bulb com-
mercialized by Thomas Edison in the early 1880s. Artificial lighting has emerged
as one of the hallmarks of modern development and provides a unique attribute
for identifying the presence of development or human activity that can be sensed
remotely. Although there are some cultural variations in the quantity and quality
of lighting in various countries, there is a remarkable level of similarity in lighting
technology around the world. Thus, the remote sensing of artificial lighting is viewed
as an accurate, economical, and unambiguous way to map the global distribution and
density of developed areas.

The only satellite sensor currently collecting global low-light imaging data suit-
able for mapping urban lighting is the U.S. Air Force Defense Meteorological
Satellite Program (DMSP) Operational Linescan System (OLS). The DMSP OLS
was designed to collect global cloud imagery using a pair of broad spectral bands
placed in the visible and thermal. The DMSP satellites are flown in polar orbits
and each collects 14 orbits per day. With a 3000-km swath width, each OLS is
capable of collecting a complete set of images of the Earth twice a day. At night,
the visible band signal is intensified with a photomultiplier tube (PMT) to enable
the detection of moonlit clouds. The boost in gain enables the detection of lights
present at the Earth’s surface. Most of the lights are from human settlements (cities
and towns) and fires, which are ephemeral. Gas flares are also detected and can
easily be identified when they are offshore or in isolated areas not impacted by
urban lighting.

The DMSP-OLS has a number of favorable characteristics for global urban map-
ping including the potential for nightly global coverage and a manageable data vol-
ume. Over the years, a number of researchers have attempted to use DMSP-OLS
nighttime lights as a representation of the urban geographic footprint (Doll et al.,
2000; Ebener et al., 2005; Elvidge et al., 1997, 1999, 2004; Foster, 1983; Gallo et al.,
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1995, 2004; Imhoff et al., 1997; Lo, 2002; Sutton and Costanza, 2002; Sutton, 2003;
Sutton et al., 2007; Welch, 1980). These studies revealed that the OLS-derived light-
ing features are substantially larger than the lighting sources present on the ground
and that local economic conditions impact the detection and brightness of satellite
observed lighting. Both of these effects detract from the value of the data in map-
ping urban footprints. On the other hand, it is possible that nighttime lights depict
the spatial patterns of global resource consumption and economic activity more
clearly than any other available satellite data source. In this chapter, we examine
three types of global urban product types developed based on DMSP-OLS night-
time lights and discuss possible improvements in the remote sensing of nocturnal
lighting.

6.2 DENSITY OF CONSTRUCTED SURFACES

Human beings around the world build, use, and maintain constructed impervious
surfaces for shelter, transportation, and commerce. Constructed surfaces include
roads, buildings, sidewalks, driveways, and parking lots. Collectively, these repre-
sent one of the primary anthropogenic modifications of the environment. Expansion
in population numbers and economies combined with the popular use of automobiles
has led to the sprawl of development and a wide proliferation of constructed impervi-
ous surfaces. It is anticipated that the worldwide pattern of sprawl development will
continue in the coming decades in response to both population growth and improve-
ment in living standards.

Constructed impervious surfaces can be viewed as hydrological and ecological
disturbances. However, constructed surfaces are different from most other types of
disturbances in that recovery is arrested through the use of materials that are resistant
to decay and are actively maintained. The same characteristics that make impervious
surfaces ideal for use in construction produce a series of effects on the environment
(Schueler, 1994). Impervious surfaces alter sensible and latent heat fluxes, causing
urban heat islands (Changnon, 1992). In heavily vegetated areas, the proliferation of
impervious surface area (ISA) reduces the sequestration of carbon from the atmo-
sphere (Milesi et al., 2003). ISA alters the character of watersheds by increasing the
frequency and magnitude of surface runoff pulses (Booth, 1991). Watershed effects
of ISA begin to be detectable once 10% of the surface is covered by impervious
surfaces, altering the shape of stream channels, raising water temperatures, and
sweeping urban pollutants into aquatic environments (Beach, 2002; Carlson, 2007).
Hydrologic consequences of ISA include increased flooding, reductions in ground
water recharge, and reductions in surface water quality.

Spatial grids depicting the density of constructed surfaces are typically in units
of percent cover and are widely used in hydrologic modeling and flood prediction.
These grids are distinctly different from traditional urban land use products that
report classes such as commercial/industrial, high-density residential, and low-den-
sity residential. For applications such a hydrologic modeling, land use data are not
nearly as useful as constructed surface density grids.

There are three primary remote sensing approaches to estimating the density of
constructed surfaces (Slonecker et al., 2001; Weng, 2007). The first approach is to
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map constructed areas using high spatial resolution imagery (Goetz et al., 2003;
Yang et al., 2003; Slonecker, and Tilley, 2004). Typically, ISA products derived from
high spatial resolution imagery cover small areas and to date, there has not been a
standardization of methods that would facilitate the merger of products generated
by diverse organizations. The second approach is to use moderate spatial resolution
multispectral data (e.g., Landsat) to estimate the density of ISA. Such a product was
recently produced by the U.S. Geological Survey using Landsat 7 data from the early
2000s (Yang et al., 2003; Crane et al., 2005). This product has 30-m resolution and
a combination of spectral and spatial methods to estimate the density of ISA. A sub-
sample of high spatial resolution imagery was used to establish the methodology and
to provide an accuracy assessment. The third approach is to use indicators to esti-
mate the density of ISA. As an example, Stankowski (1972) proposed the estimation
of ISA based on population density. Another indirect method is the estimation of
ISA based on coverage coefficients developed for standard land cover classes, such
as low-density residential, high-density residential, commercial/industrial (Jennings
et al., 2004).

We have used nighttime lights to estimate the density of constructed surfaces. Elvidge
et al. (2004) pioneered this approach, producing a 1-km? grid of constructed surface den-
sities for the conterminous USA using nighttime lights, street, and road density (from the
U.S. Census Bureau), and three urban land cover classes from the early 1990s (Vogelmann
et al.,, 2001). Subsequently, Elvidge et al. (2007a) produced a global density grid of con-
structed surfaces using nighttime lights and population count from the U.S. Department
of Energy Landscan data (Dobson et al., 2000; Bhaduri et al., 2002). These data products
are available at http:/www.ngdc.noaa.gov/dmsp/download_global_isa.html.

The 20 leading countries in terms of total ISA are shown in Table 6.1. Also
listed is the quantity of ISA per person in square meters. At the bottom of the
table, we list the total ISA for all countries and the average amount of ISA found
per person worldwide. Clearly, the countries that measure high on total ISA are
either large in areal extent and/or total population, or have high levels of economic
development.

The countries with particularly high values of ISA per person according to our
estimation are almost universally affluent (United States, Canada, Norway, Sweden,
Finland, Spain, France, Bahrain, Brunei, Qatar, and the United Arab Emirates).
With the exception of Brunei, these countries cluster in the northern hemisphere
(Figure 6.1). It is interesting to note that Japan and Mexico both score at lower identi-
cal levels (114 m? of ISA per person). Japan’s moderate level of ISA (relative to their
GDP per capita) can be attributed to the topographic and agricultural constraints on
development present in that country.

The total ISA of the world is estimated to be 579,703 km?2. This is nearly the
same size as the country of Kenya (584,659 km?), and larger than Spain (505,735
km?) or France (546,962 km?). The country with the most ISA is China (87,182
km?), followed closely by the United States (83,881 km?) and India (81,221 km?).
China’s and India’s ISA footprints are population-driven, whereas the United States
ISA footprint is more driven by affluence. Explorations of ISA per capita show
generally expected patterns in that countries with high population densities (e.g.,
“big denominators”) show lower levels of ISA per capita. The global average of
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TABLE 6.1
Top 20 Countries in Terms of Constructed Surface Area
Constructed

Constructed Surface Population Surface Area per
Country Area (km?) (Landscan 2004) Person (m2)
China 87,182 1,292,548,864 67.4
United States 83,881 282,575,328 296.8
India 81,221 1,058,349,824 76.7
Brazil 17,766 177,885,936 99.9
Russia 17,135 138,947,840 1233
Indonesia 16,490 230,000,208 71.7
Japan 13,990 122,192,928 114.5
Mexico 11,854 103,608,488 114.4
Canada 11,295 32,022,750 352.7
Pakistan 10,666 150,465,168 70.9
France 9537 59,497,124 160.3
Bangladesh 8878 140,275,504 63.3
Germany 8500 82,406,312 103.1
Italy 8294 56,528,760 146.7
Nigeria 7668 125,118,728 61.3
United Kingdom 7576 58,926,004 128.6
Spain 7037 39,481,976 178.2
Iran 6949 66,604,152 104.3
Vietnam 5981 81,249,416 73.6
Egypt 5745 75,240,640 76.4
Total Worldwide 579,703 6,245,732,591 93

1-3 41-100

FIGURE 6.1 Global distribution and density of constructed surfaces modeled from DMSP
nighttime light and LandScan population count.
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ISA per capita was estimated to be 93 m? per person. Examinations of ISA at the
watershed level support ideas that there are both economic and demographic forces
contributing to changes in the hydrologic and ecologic functioning of watersheds
around the world.

The estimate of ISA is derived solely from the brightness of satellite observed
nighttime lights and population count. Both of the input sources (nighttime lights
and population count) are produced as 30 arc second grids (~1 km? resolution) and
could potentially be updated on an annual basis. These two data sources are comple-
mentary in that the nighttime lights are generally brightest in the commercial and
industrial areas — which are generally not well defined in the population count data.
In areas where no lighting is detected the ISA estimate is based solely on population
count. In the absence of detected lighting, the population count at which 100% ISA
is reached is slightly more than 11,000 persons/km?. At this density, each person
is directly associated with 91 m? of ISA, nearly the global average of 93 m? per
person.

As the world economy and population expands it can be projected with confi-
dence that the constructed surfaces of the Earth will expand significantly. For the
moment, this product stands as the only global ISA grid. We offer it as a pathfinder,
recognizing that the mapping of constructed surface at both the global and local
scale will continue to improve over time.

6.3 GLOBAL POVERTY MAP

During our work with nighttime lights and the Landscan population count data,
we had the occasion to overlay the two datasets as a color composite image. In this
image, it is possible to see areas devoid of satellite detected lighting in the densely
populated belts of poverty in China, India, and across Africa. Using Europe and the
United States as visual reference, it is also possible to see regions where the satellite-
detected lighting is dim relative to the population numbers. We developed the notion
of using the quantity of lighting per person as an indicator of poverty levels. The
concept is that in prosperous regions of the world there is no shortage in lighting. The
quantity of lighting per person declines as poverty rates increase. Our assumption is
that the satellite will be unable to detect lighting in the areas with the most extreme
poverty levels.

Poverty has emerged as one of the chronic dilemmas facing civilization during
the 21st century. Based on data from the World Development Indicators (World
Bank, 2006), approximately 42% or 2.6 billion people live in poverty. Poverty is the
general term describing living conditions that are detrimental to health, comfort,
and economic development. There are different forms of poverty, such as inadequate
supply or quality of food, water, sanitation, housing, clothing, schools, and medical
services. In locations where poverty levels are high, there is typically a convergence
of inadequacies across several of these areas. Widely noted consequences of poverty
include higher infant mortality, shorter life spans, and lower literacy rates. Poverty
is also closely associated with environmental degradation (Snel, 2004). The United
Nations Millennium Development Goals includes a 50% reduction in extreme pov-
erty by the end of 2015. Economic analyses (Sachs, 2005) indicate that eliminating
poverty is a realistic objective.
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The primary source for statistics on global poverty is the World Bank, which has
collected and distributed national-level data on poverty levels since 1990. Their meth-
ods are based on the analysis of household surveys conducted in almost 100 countries.
Survey questions cover sources of income, consumption, expenditures, and numbers
of individuals making up the household. Most surveys are conducted by government
employees. Two styles of poverty data are produced — national poverty line data and
international poverty line data. Individual countries establish their own poverty line
for the national data. Differing standards in defining poverty make pooling the national
poverty line data problematic. More recently, purchasing power parity has been intro-
duced into the formulation of international poverty line data, which is specified in
terms of the number of individuals living on either $1 or $2 per day (Figure 6.2).

There are a number of problems recognized with the World Bank poverty line
data: not all countries conduct the surveys, the currently available data were derived
from surveys spanning 1988 through 2004, and the survey repeat cycle is uncertain.
The intercomparability of the estimates is uncertain due to difficulties in reconciling
consumption and income data, plus discrepancies in the purchasing power parity
estimates for individual countries (Karshenas, 2004). It is also possible for govern-
ments to influence the outcome of the surveys, because they design the questions,
select the areas for survey, and conduct the interviews. The use of the $1 and $2 per
day standards for the international poverty line data is not applicable to prosperous
countries such as the United States, where 12% of the population is listed in poverty
(De Navas-Walt et al., 2005).

Poverty maps have emerged as important tools for targeting aid and develop-
ment resources (Sachs, 2000; Sachs et al., 2001; Henninger and Snel, 2002; CIESIN,
2006). Poverty maps traditionally depict a single measure or index value for an entire
administrative unit, such as country or state. Spatially disaggregated global maps
of the numbers of individuals living in poverty, based on a consistent definition of
the poverty line would be extremely useful for targeting of efforts to reduce pov-
erty (Hentschel and Lanjouw, 1998). Part of the value of spatially disaggregated
data is that they can be aggregated to multiple levels: national, state, substate, or

Percent of Population [ | No Data
Living on $2 per Day [ 2-12

“Source: World
12-28
Development ] 28-50
Indicators 2006”
B 50-75
B 7597

FIGURE 6.2 Map of poverty levels for countries reporting international poverty line data
(percent of population living on $2 per day or less) from the World Development Indicators
2006. Note that a number of countries have no data reported and that the $2 per day poverty
line is not applicable to developed countries.
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municipal. If spatially disaggregated poverty maps could be updated on an annual or
semiannual basis, they could be used to track the effectiveness of poverty reduction
efforts in specific localities and the consequences of natural disasters, epidemics, or
conflicts.

Two spatially disaggregated data sources have been combined to form a global
poverty index (PI): LandScan population counts and DMSP nighttime lights. We
defined a PI as the LandScan 2004 population count divided by the average vis-
ible band digital number from the lights (Figure 6.3). In areas where population
is present but no lights were detected, the full population count is passed to the
index.

FIGURE 6.3 Poverty index calculated by dividing the LandScan 2004 population count by
the average digital number of the DMSP satellite F15 nighttime lights from 2003.
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FIGURE 6.4 Calibration of the Normalized Poverty Index (NPI) for estimation of poverty
levels.
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A calibration for estimating the number of people living in poverty was developed
based on the World Development Indicators 2006 national level estimates for the
percentage of people living on $2 or less per day. To establish the calibration, the sum
of the PI values was extracted for each country. This sum was then divided by the
total population count and multiplied by 100.0 to form a normalized poverty index
(NPI). The NPI was then regressed to the percentage of the population living on $2
per day or less (Figure 6.4).

The calibration from Figure 6.4 was applied to the NPI grid to estimate the pov-
erty level in each grid cell and then multiplied by the LandScan population grid to
yield an estimate of the poverty count. The gridded product is available at http://
www.ngdc.noaa.gov/dmsp/download_poverty.html. The calibration was also applied
to national level NPI and LandScan population counts to yield spatially aggregated
poverty estimates. This was done for 232 countries to generate national poverty levels
and poverty counts, which are available in spreadsheet form at the Web site. Among
the 80 countries having populations greater than 10 million, those having poverty
rate estimates greater than 80% are Ethiopia, Burkina Faso, Madagascar, Cambodia,
Uganda, Tanzania, and Niger. Those having estimated poverty rates less than 10%
include Taiwan, South Korea, Egypt, Saudi Arabia, Japan, Belgium, Netherlands,
Italy, United Kingdom, and the United States.

The procedure used to generate the national level poverty estimates was then
applied at subnational level for 2543 administrative units having LandScan popula-
tion values above zero. These results are presented graphically in Figure 6.5. Many
of the patterns present within individual countries match expected results, with lower
poverty levels in the more prosperous areas. For instance, coastal China has lower
poverty rates than the interior area, northeastern India has higher poverty rates than
western and southern India, and the prosperous Sao Paulo region has lower poverty
rates than other parts of Brazil. The effects of lighting from gas flares, which reduce
the poverty estimates, can be observed in coastal Nigeria. A comparison of the esti-
mated poverty rates in the United States versus measured rates reported for 2004 by
De Navas-Walt et al. (2005) revealed an RMSE of 4.22%.

Percent of Population in Poverty 2-12
Source: DOE LandScan 12-28
Gridded Population (2004) I 28-50
and NOAA-NGDC Nighttime . 50-75
Lights of the World (2003) . 75-97
No Data

FIGURE 6.5 (See color insert following page 324.) Map of poverty levels for 2,543 sub-
national administrative units estimated based on the satellite data—derived poverty index.
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6.4 ESTIMATION OF ECOLOGICAL FOOTPRINTS

We have explored the potential of using satellite-based estimates of a constructed
area as a spatially disaggregated proxy for the human ecological footprint. Recently,
the National Geophysical Data Center produced the first global grid of constructed
area densities based on satellite-derived nighttime lights and population count data
(Elvidge et al., 2007a). We have preliminary evidence (presented below) that spatial
variation in the density of constructed area strongly correlates with the spatial varia-
tion in human ecological footprints.

The ecological footprint is a well-established resource accounting tool that
estimates how much biologically productive land and water area an individual or
a geographically defined population uses to produce the resources it consumes
and to absorb the wastes it generates based on prevailing technology and resource
management practices (Wackernagel and Rees, 1996). Ecological footprint calcu-
lations have emerged as a valuable means to communicate and understand human
impacts on the natural systems upon which we depend. They are also useful in
modeling the longer-term impacts of human consumption — both on natural sys-
tems and society.

One of the principles in calculating ecological footprints is that populations uti-
lize widely distributed resources. This is a key consideration for urban populations
because the land used to generate their food, fiber, and wood are widely distributed
and could be halfway around the world. Similarly, the absorption of CO, produced
by fossil fuel is widely distributed. Another principle used in the calculation of eco-
logical footprints is that it is not necessary to pinpoint the location that produces the
resources used by a population. Based on this consumption, the quantity of land or
water surface required to generate that quantity of resource is calculated in terms of
a normalized standard for biological productivity.

The Ecological Footprint’s widely used normalized standard measurement unit is
global hectares (GHA), defined as a biologically productive hectare with world aver-
age productivity. Kitzes et al. (2007) estimate that in 2003 the Earth made available
11.2 billion GHA while maintaining humanity’s consumption depended on 14.1 bil-
lion GHA. Thus, humanity’s resource consumption in 2003 was rated at 25% more
than the Earth was able to produce in the same year. Another way to look at this num-
ber is that it took the Earth 15 months to produce the resources used by humanity in a
12-month period. When consumption exceeds production, the difference between the
two numbers is made up by liquidating the Earth’s ecological stores and the accumu-
lation of waste products such as CO, in the atmosphere. These results and the ecologi-
cal implications appeared in a recent report issued by WWF International (2006).

While a growing number of organizations are producing estimates of ecological
footprints, the Global Footprint Network (GFN) has emerged as the premier orga-
nization in establishing and updating the standards used and produces the most
widely cited national and global ecological footprint estimates. The GFN assem-
bles data from a wide range of sources to produce National Footprint Accounts,
which record the resources consumed, CO, emissions, and calculations of the
land and water areas that need to produce the resources and absorb the CO,. The
data sources and modeling continue to evolve under the auspices of a standards
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committee. Their most recent report (Ecological Footprint Standards 2006) is
available at http://www.footprintstandards.org/. Each year, national footprint
accounts are updated to track the consumption of crop products, fibers, livestock,
fish, timber, fuel wood, and CO, produced. From these values, the model calculates
the GHA utilization. The surface cover types that are tracked by national footprint
accounts include cropland, grazing land, fishing grounds, forest, built-up land,
and “carbon land.” Land cover extents are drawn from multiple sources including
CORINE, Global Agro-Ecological Zones, GLC 2000, and World Conservation
Monitoring Center. Of these cover types, built-up land area estimates may be the
least reliable data set, and weakest for global comparison (Kitzes et al., 2007).

By dividing the constructed area by population count, it is possible to produce a
disaggregated grid estimating the constructed area per person. By aggregating these
values, it is possible to estimate the constructed area per person at a variety of lev-
els — including national and subnational administrative units. Figure 6.6 shows the
national level constructed area per person (in square meters) versus the ecological
footprint per person (in GHA) for 149 countries (from the GFN). For constructed
area per person values in the 30- to 60-m? range, the ecological footprint is set at
about 1 GHA. Beyond 60 m?, the ecological footprint increases along with the con-
structed area per person values in a largely linear manner.

The constructed area data may be used to improve either the quality or the spatial
resolution of ecological footprints: (1) by using the quantity of built-up land as an
input into the National Footprint Account estimation models. The satellite derived
constructed area data can be used as the input for built-up lands. (2) As Figure 6.6
shows, it is possible to estimate national level ecological footprints based on the con-
structed area per person metric. This relationship can be used to estimate and evalu-
ate the ecological footprints for the 80+ countries and small islands (e.g., Brunei,
Oman, Seychelles, Aruba) not covered by the GFN estimates, and (3) the subnational
estimation of ecological footprints can also be made by working from the highly
refined national level estimates and the disaggregated constructed area/person grid.
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FIGURE 6.6 Constructed area per person versus ecological footprint per person for 149
countries.
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6.5 CONCLUSION

Global urban mapping has, in most cases, been constrained to simple delineations
of urban or developed areas. In this chapter, we have presented concepts for three
types of global maps that characterize the density, living conditions, and resource
consumption levels within human settlements on spatially disaggregated grids.

The estimate of ISA has been derived solely from the brightness of satellite-
observed nighttime lights and the population count has been derived from the
Landscan population grid. The ISA per capita revealed that countries with high pop-
ulation densities such as China and India had lower levels of ISA per capita.

A global map of poverty levels has been produced using a combination of four
types of satellite data [DMSP lights, moderate resolution imaging spectroradiometer
(MODIS) land cover, shuttle radar topography mission (SRTM) topography, and con-
trolled image base (CIB)]. The MODIS, SRTM, and CIB data were used as inputs
(along with census data) into a global population grid. DMSP lights were used as a
measure of economic activity. The PI used to estimate poverty levels is calculated by
dividing population count by the brightness of the nighttime lights. A calibration was
developed using national-level poverty levels reported by the World Development
Indicators 2006. The resulting estimate for the number of people living in poverty is
2.3 billion, consistent with the 2.6 billion estimated by the World Bank (2006).

The third style of global urban mapping that we have explored is focused on
resource consumption. Although the OLS is remarkable for its detection of dim light-
ing, it is clear that the quality of global urban mapping products could be improved
through the detection of even dimmer lighting with improvements in spatial resolu-
tion. The full suite of shortcomings of the OLS data for urban mapping include:
(1) coarse spatial resolution (2.7-km ground sample distance), (2) lack of onboard
calibration, (3) lack of systematic recording of in-flight gain changes, (4) limited
dynamic range, (5) 6-bit quantization, (6) signal saturation in urban centers resulting
from standard operation at the high gain setting, (7) lack of a thermal band suitable
for fire detection, (8) limited data recording and download capabilities (most OLS
data are averaged on-board to enable download of global coverage), (9) lack of a well-
characterized point spread function (PSF), (10) lack of a well-characterized field of
view, and (11) lack of multiple spectral bands for discriminating lighting types.

Several of the observational shortcomings of the OLS will be addressed by the low-
light imaging data that will be acquired with the Visible/Infrared Imaging Radiometer
Suite (VIIRS), which will fly on the National Polar Orbiting Environmental Satellite
System (NPOESS) in the next decade. The VIIRS low-light imaging sensor will con-
tinue to acquire nightly global data, but will have onboard calibration and at higher
spatial resolution (0.8 km) than the OLS. Thus, it can be expected that poverty assess-
ments made with VIIRS data will be of higher quality than those that can be achieved
with the OLS. The VIIRS, however, is not designed with the objective of sensing
nighttime lights. Rather, it has the objective of nighttime visible band imaging of
moonlit clouds — the same mission objective of the OLS low-light imaging. The
VIIRS low-light imaging spatial resolution will be too coarse to permit the observa-
tion of key nighttime lighting features within human settlements. Also, the spectral
band to be used for the low-light imaging is not tailored for nighttime lighting.
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In total, OLS lighting was not detected for 1.68 billion people. Although the OLS
is remarkable for its detection of dim lighting, it is clear that the quality of the PI
could be improved through the detection of even dimmer lighting. The VIIRS instru-
ment is designed to match the detection limits achieved by the OLS. In addition,
both OLS and VIIRS will only acquire low-light imaging data in a single broad
visible/near-infrared band. There is spectral information on the type of lighting, and
changes in the type of lighting could be quite useful for improving the quality of pov-
erty estimates. The final area where a substantial improvement in low-light imaging
could be envisioned is in spatial resolution. On the basis of recent simulations made
with high spatial resolution airborne camera imagery of nighttime lights, nighttime
photography from the International Space Station and ground-based spectral mea-
surements, Elvidge et al. (2007b, 2007c) developed the Nightsat mission concept. To
be effective in delineating primary nighttime lighting patterns, Nightsat low-light
imaging data should not exceed 50- to 100-m spatial resolution and achieve minimal
detectable radiances in the range of 2.5 x 10-8 W cm™ sr~! um~!. Although panchro-
matic low-light imaging data would be useful, multispectral low-lighting imaging
data acquired with three to five spectral bands would enable more quantitative appli-
cations and enable the detection of lighting type conversions.

Cloud and fire screening of the low-light imaging data would be accomplished
using simultaneously acquired thermal band data. The thermal band data could come
from VIIRS if Nightsat were flown on an NPOESS satellite. The system would use a
combination of methods to produce radiance-calibrated data. Geolocation accuracy
would be 50 m, comparable to that of Landsat. The system objective would be to col-
lect a sufficient quantity of imagery to construct annual global cloud-free composites
of nighttime lights. A near-Sun-synchronous polar orbit, with an early evening over-
pass, would provide temporal consistency important for change detection (Elvidge
et al., 2007b, 2007c).

Nightsat system would enable a wide range of social, economic, and biological
applications where there is currently a dearth of systematically collected, unbiased,
global data. Nightsat data would provide important constraints and inputs for the
spatial modeling of human population growth and distribution, land use, rates of
development, anthropogenic emissions to the atmosphere, and independent estima-
tion of economic indices. In addition, Nightsat data would be used to model and
understand human impacts on the environment such as the proliferation of impervi-
ous surface area, nonpoint sources of aquatic pollution, habitat fragmentation, and
the direct effects of nocturnal lighting on night environment, human health, security,
and the visibility of stars. Moderate-resolution low-light imaging sensor data would
be an important complement to the mapping capacity of moderate resolution daytime
imaging sensors such as Aster and Landsat because it would provide an unambiguous
indication of the presence of development and growth in development. Nightsat data
would also be useful for calibrating and validating coarser resolution low-light imag-
ing data acquired with the OLS and VIIRS sensors (Elvidge et al., 2007b, 2007c).

Although urban areas occupy only a small fraction of the Earth’s surface, urban-
ization has risen to become one of the driving forces altering the Earth environment.
Urban areas are the focal points for the consumption of food, water, and energy. They
are likewise the focal points for both air and water pollution. Most of the agricultural,
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fisheries, and resource exploitation activities constituting the balance of human
impacts on the environment are driven by the consumption occurring in urban areas.
The widespread use of impervious construction materials results in vastly increased
surface runoff, which alters the stream flow and biodiversity. Urban areas tend to be
built on flat, low-lying areas, often replacing wetlands. Although urban areas cover
only a small percentage of the Earth’s surface, their influence is enormous.

In the coming decades, urbanization will have a profound effect on the biologi-
cal, chemical, and climate systems of our planet, both at local and at global scales.
Urban areas are the largest sources of anthropogenic greenhouse gas emissions, and
major sources of aerosols and water pollution. Urban expansion results in losses
of agricultural lands and the fragmentation of wildlife habitats. Urban areas will
expand dramatically as human population numbers are expected to double in the
next 60—70 years. The increased urban demands for energy, food, and water will tax
natural systems.

In no small measure, the activities concentrated in urban areas will determine
the future habitability of our planet as a home for humankind and other species.
There are legitimate questions regarding the sustainability of the current pattern of
urbanization in the face of anticipated population and economic growth. Over time,
urban areas may evolve to become more compact, energy-efficient, and less pollut-
ing, exerting a smaller footprint on the environment. In the interim, remotely sensed
data provide one of the best sources of information on how urban areas are changing
through time and how they affect the environment.
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71 INTRODUCTION

Although significant progress has been made recently to assess the distribution of
human population with respect to physiographic features — coastline, rivers, eleva-
tion (Small and Cohen, 2004) — these estimates cannot distinguish urban from rural
areas. Considerable unmet need for global delineation of urban areas, as well as
unmet need for spatial estimates of urban population (Montgomery et al., 2003), led
to the design of the Global Rural-Urban Mapping Project (affectionately known as
GRUMP).

GRUMP has produced the only known global database aimed at understanding
patterns of urbanization that systematically incorporates spatial and demographic
data. Efforts to understand urbanization at a global scale have a long history within
the United Nations Population Division (see, for example, World Urbanization
Prospects, UN 2006), yet a spatial orientation is well beyond its historical or current
purview. Concomitantly, in the past 20 years, there have been major improvements
in the spatial delineation of what could potentially pass as urban proxies: boundaries
through geospatial technologies and the detection of built-up areas or other urban
forms through remote sensing technologies.
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The unique features and methods of the GRUMP databases are described below.
Before doing so, however, it is important to understand that a project such as GRUMP
required institutional commitments and maturity of several types in order to suc-
ceed. The future of urban population mapping remains uncertain for the research
and policy communities most directly affected.

7.2 INSTITUTIONAL CONSIDERATIONS

GRUMP was conceived by a group of like-minded researchers attempting to better
understand the distribution of human population with a particular interest in being
able to disentangle urban settlements from more diffuse and sparse patterns of rural
settlement largely for the study of human—environmental interactions at global and
regional scales.* Although there were methodological and data contributions from
multiple project partners, GRUMP was primarily implemented by a single organi-
zation—the Center for International Earth Science Information Network (CIESIN),
at Columbia University.

CIESIN was in a unique position to implement the project for the following rea-
sons. The various data inputs for this project are vast: they include spatial data on
administrative subnational units at the finest resolution available, with associated
populated counts; place name, geographic coordinates, and population estimates;
and spatial boundaries indicating which areas are urban. Many of these inputs —
such as administrative boundary data and population counts reported by administra-
tive units —are generally the purview of national statistical offices (often different
units within them). Yet, no single international organization collects, standardizes,
and disseminates such data. The World Health Organization leads the Secondary
Administrative Level Boundary project (http://www.who.int/whosis/database/gis/
salb/salb_home.htm), which makes administrative boundary data publicly available,
but the level of data in that collection is too coarse for the study of urban areas, and
those data do not include population, nor is the collection global in extent at this
point. To complicate matters, finely resolved administrative boundary data are often
proprietary or costly to purchase. Population data at these finer levels are usually
available freely from national statistical offices but they may not be joined to the spa-
tial data. Thus, university-based efforts, such as those led by Columbia University’s
CIESIN since the early 1990s, to collect, clean, and render population estimates of a
freely distributable transformed grid — the Gridded Population of the World (GPW)
data set—fill a critical role (Balk and Yetman, 2004). Furthermore, the investments
in GPW’s underlying data and methods (Tobler et al., 1997) provide a critical back-
bone on which GRUMP was developed. Replication of the GPW input data holdings
beyond those held by CIESIN alone would have made the GRUMP investment pro-
hibitively expensive in time and other costs.

International bodies — which have made a considerable mark in establishing
standards for undertaking national census and collecting geospatial data (UN,
2008) — may not have the flexibility to modify their current mandates to fulfill

* Individuals are identified at http://sedac.ciesin.columbia.edu/gpw/credits.jsp, and a fuller history of the
project is at: http://sedac.ciesin.columbia.edu/gpw/history.jsp.
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the role of data collector, repository, and disseminator of global subnational demo-
graphic data. One may wonder why the UN Statistics Division, which maintains
The Demographic Yearbook, could not take on such a role. Although the Statistics
Division receives reports or data from national statistical offices, its mandate does
not cover subnational data or geospatial data. Furthermore, even though this arm
of the UN maintains working relationships with national statistical offices, the
end product of the Demographic Yearbook has been widely criticized by user
(Montgomery et al., 2003). For example, it reports country- and city-level statis-
tics without conducting sufficient analysis on the quality of those data. In con-
trast, the United Nations Population Division goes to great length to assess data
quality and uses a variety of well-established democratic techniques to correctly
estimate and forecast population. Even for its estimates of urban population, how-
ever, the Population Division’s emphasis is on cities of 750,000 persons or more,
and ignores the spatial dimension. Beyond international agencies, some efforts
of international networks address spatial data. One such network is the Global
Spatial Data Infrastructure Association, which pays no particular attention to
demographic data.

Universities are not necessarily bound by the same constraints that international
and national agencies face. For example, the UN complies with certain political
realities of its institution: it does not recognize Taiwan as a separate national author-
ity from that of the People’s Republic of China. In contrast, universities (apart from
those in China) are free to do so. A national agency such as the United States Census
Bureau also produces fine-grained estimates of its own population as well as nation-
al-level population trends for all other countries, but it does not see subnational esti-
mation of foreign nations as within its domain.

International agencies often have a global scope that single universities or con-
sortia thereof do not. Yet international bureaucracies have become rigid, whereas
universities (and governmental or international agency contracts to them) offer
greater flexibility for constructing new methods. A retrospective examination
makes it clear that the development of GRUMP would have been far easier had
there been a ready-made set of input datasets supplied by international agencies —
leaving only the integration and methodological development to universities. Who
will carry the torch in future decades is unclear, but one hopes that an increasing
awareness of the importance of spatial data to studies of urbanization (Montgomery,
2008) will lead to more informed decisions — if not a complete reevaluation and
overhaul — in the institutions participating in data standards, collection, dissemi-
nation, and so forth.

7.3 THE GOLD STANDARD FOR GLOBAL EXTENT URBAN DATA

When a group of researchers or planners sets out to address an issue, it usually does
so with a specific set of questions in mind, rather than the construction of new data
for data’s sake. The GRUMP project was no different; yet, because GRUMP was
undertaken at an institution that also produces and disseminates global datasets it
quickly became apparent that the need for, and usage of, a global-scale georefer-
enced urban population data set was potentially tremendous. Several basic features
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emerged to set a “gold standard” — an implicitly recognized set of standards of
excellence — as required to understand urbanization in a spatial context, at a global
scale. These include (1) time-varying population characteristics coupled with time-
varying urban boundaries; (2) estimates should be comparable not only in time, but
also by location (irrespective of the level of economic development, topography, and
so forth)*; (3) urban contours should be identifiable at the extent of an urban area as
well as within urban areas.

There is no single definition of what makes an area “urban.” The appendix of
the United Nations World Urbanization Prospects (UN, 2006) identifies how each
country defines “urban.” Criteria include a variety of population size or population
density thresholds associated with administrative areas, economic activity char-
acteristics of administrative areas, capitol cities, and combinations thereof, some-
times with additional criteria such as contiguity specification. Specifications that
are associated with the degree of “built-up” area as detectable from vegetated areas
are more readily adopted by the physical sciences (Small, 2005) and planning com-
munities, but no single consensus on “built-up” or method for identification yet
exists.

When defining the population characteristics of an urban area, at minimum,
a count of persons living in each urban area is necessary. Yet, far more informa-
tion is a desirable option to ascertain demographic composition, trends, and change
(Montgomery et al., 2003). Demographic forecasts require demographic rates (fertil-
ity and mortality), age, and life expectancy are the basics for demographic forecast-
ing, although new methods hold promise for using different data streams and factors
than found in the traditional cohort component forecasting (Montgomery and Balk,
forthcoming). A full understanding of the demography of urban change also requires
information on migration. Demographic censuses are typically held once per decade,
and in some places, intercensal estimates are made in the mid-period. Yet, if migra-
tion — or residential mobility — is frequent, say on the order of more than once
per year neither current censuses nor standard demographic surveys, such as the
Demographic and Health Surveys (http://measuredhs.com) and Multiple Indicator
Cluster Surveys (www.childinfo.org), can measure it accurately. Socioeconomic
characteristics are also relevant. It would be important to know if rich or poor groups
(or ethnic groups, or many other characteristics) are growing at different rates or are
highly concentrated or distributed.

Defining the urban extent characteristics requires some means of systematic
identification of an urban area’s boundaries or physical “footprint.” Some national
statistical offices supply boundary data files for urban areas (even to distinguish the
city proper from outlying areas) but most do not. When the administrative unit is
fine enough, and nested hierarchical relationships between administrative units are
known, these data may be called “building blocks” (Champion and Hugo, 2004) and
would likely suffice as a means for constructing urban contours. In the absence of
these building blocks, remote sensing technologies have provided several possible

* This is not a call for a population-based criteria for urbanization but rather use of some built-environ-
mental characteristic typically associated with urban areas in contrast to rural areas. There may be more
than one applicable standard, and any standard even of the built environment should take care to incor-
porate differences in that environment that occur both naturally and due to anthropogenic factors.
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proxies to delineate urban footprints, some of which are discussed elsewhere in this
volume. Indeed, much work has been done using optical imagery to detect urban
changes in particular localities. Here, my comments will be limited to efforts that
are global in extent.

High-resolution imagery has not been used at a global scale. Moderate-resolution
imagery that detects land cover (e.g., Landsat, Spot Vegetation) has been used to
determine urban areas as the presence of “mixed pixels” localities (such as reflec-
tants from trees, buildings, roads, water, and grass). These have been used in the
development of global databases such as the Global Landcover 2000 data set
(http://www-tem.jrc.it/glc2000/). Optical data of this type — even with trained clas-
sifiers and clear guidelines — have been subjectively classified, opening it up to ana-
lyst interpretation. Furthermore, clouds remain a concern for any frequently repeated
views. The most commonly used moderate-resolution data to indicate urban areas
at a global scale are the nighttime lights data (Elvidge et al., 1997a, 1997b). These
data do not indicate either built-up area or the heterogeneous pixels from vegetation
imagery, but rather stable sources of light produced by electricity and permanent
fires. Although several “lights” datasets exist, only the 1994-1995 stable city lights
data product was cleaned to remove oil and gas flares and other anomalies. By all
accounts, this data set can be seen as a proxy for urban areas. Nevertheless, it may
be subject to bias associated with levels of economic activity — i.e., poor cities
may indeed exist but their extent may be spatially underrepresented as compared
to wealthier cities of equal geographic size. Recent work indicates that the built-up
areas can be more sharply identified with radar data (Nghiem et al., 2008) than with
optical data, and shows some promise for making at least crude intraurban distinc-
tions of the built-up areas. As this recent work is based on case studies, however, the
prospects for global assessment are unknown. The gold standard areal extents would
be able to detect change in the true built-up area over time, as well as changes within
urban areas (sometimes referred to as in-fill; see Angel et al., 2005).

Both population and spatial extents estimates for urban areas are necessary ele-
ments for a linked database, yet they are not sufficient. There must be a means for
linking these data sources. Although data may be matched spatially an exact spatial
match can occur only if the boundaries are identical between data streams. This is
very unlikely to happen. Urban areas detected through satellites never have place
names associated with them. Administrative areas may have names, but these are
not necessarily the same as urban places (they may have higher- or lower-order
units). Population must then also be assigned to these extents, again ideally with
corresponding names. If more than one spatial data set is to be used, all boundaries
must be accounted for so that resulting products do not truncate observations where
boundaries do not match. The issue of linkages is difficult enough at the scale of a
city, but likely to be more complex when identifying areas within a city. Obviously,
no global work has attempted to link demographic characteristics within urban areas;
however, several case studies, notably by Weeks and colleagues (2004, 2005, 2007),
have attempted this to generate fertility contours within a city.

This gold standard is not met by GRUMP or any other approach, such as that
using sampling (Angel et al., 2005), nor by creating modeled population surfaces
(e.g., LandScan), that do not indicate urban areas in a systematic way (Dobson et
al., 2000). Although each of these as well as other approaches offer something
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significant to the questions they were constructed to answer, and to the discourse at
large, GRUMP comes closest to meeting the gold standard, and lays the foundation
for meeting the gold standard in the foreseeable future.

74 GRUMP AND THE GOLD STANDARD

GRUMP measures population with associated spatial extents. Population is esti-
mated for more than one target year (1990, 1995, and 2000) so that the estimates
can be integrated with other single-year data ranging the same decadal span (i.e., so
that 1990 environmental data can be matched with 1990 population data, not with
year 2000 population data). The database is not designed to be used to determine
change over time, in spatial terms, or to measure implicitly spatial concepts — such
as change in population density over time.* This is because the extents are measured
at only one point — 1994-1995 — using the nighttime lights “stable city light”
data set. No demographic characteristics other than population counts are estimated.
Place and administrative names are also identified. Subcity population distributions
are detected in many localities, but not all. No attempt is made to classify them as
inner city, suburban, and so forth. How GRUMP meets or fails the gold standard is
elaborated on, in turn.

One shortcoming of using the nighttime lights (even the stable city lights data,
which surely have fewer “false positives,” or locations detected through the lights
that are, in fact, not cities) is known as the lights overglow or a “blooming effect”
(Elvidge et al., 2004). This overestimation of the true extents of urban areas is
believed to be dependent on the intrinsic characteristics of the sensor. The extent
to which the blooming effect is associated with the economic status of locations is
unclear. Furthermore, the lights cannot detect less-electrified regions of the world,
and thus some settlements, in particular those that are small or poor (i.e., without
electricity), go unmeasured. The former leads to an overestimation of the size of
some urban areas, whereas the latter two concerns lead to detection of fewer urban
areas. These shortcomings aside, the lights appear to detect settlements as small as
a few thousand persons in South America, for example. Unlike other approaches to
urban detection, the limitations with the use of these lights are well known at this
point, and acknowledged by the data producers. Furthermore, the lights make an
extremely important contribution to establishing a gold standard for urban detec-
tion. Future lights datasets may be used to provide a time series of detectable foot-
prints. Future research can help identify the potential bias associated with using a
measure of light rather than built-up areas; and new methods may be used to over-
come any resulting bias as well as the limitations associated with the overglow.

* National-level estimates of population in 1990 and 2000 match those of the United Nations, so change
over time at that level will be consistent with estimates from the UN. However, estimates of change
over time that are subnational in nature, particularly at the resolution of the GRUMP data, are not
intended. With modification to the GRUMP methodology to incorporate subnational growth, improved
estimates could be generated to permit assessment of change in subnational population over time. Yet
this is secondary, as change in areal extents and, therefore population density over time, would remain
problematic so long as only a single set of nighttime lights were used. The primary reason constraining
spatiotemporal comparisons is the use of a single, mid-period, footprint to detect urban extents.
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GRUMP has no means for assigning intraurban contours of the built-up area. In
some instances (particularly for populous cities), as described below, the population grid
associated with the GRUMP databases produces estimates of population at a subcity
level. One could argue that defining the urban footprints as is accomplished in GRUMP
should precede that of understanding the intraurban contours, because it is necessary
to first establish the boundaries in which the intra-urban contours nest. In this sense,
GRUMP is a first step in this direction. Furthermore, future versions of night-lights data
hold promise for making distinctions of light areas within a contiguous light.

No other demographic indicators apart from population counts and density are
produced from GRUMP.

7.5 GRUMP

Details for the GRUMP methodology are found elsewhere (see Balk et al., 2005)
and are summarized here.* The GRUMP project produces three basic types of data
products: a data set of human settlement points, an urban extent mask, and an urban
population grid (CIESIN, 2004a, 2004b, 2004c). The latter two datasets may be
combined to produce urban population estimates associated with urban footprints.
Figure 7.1 shows the population points. Figure 7.2 shows the process by which the
points are allocated to the urban footprints: as in the case of Cali (which has 12 settle-
ment points within and one additional point within the margin of error of the extent
boundary), the population of the points is summed to the urban extent. Figure 7.3

Populated Settlements
Number of Persons, 2000
5K-100K (white triangles)
100K-500K
500K-1Mil
1Mil-5Mil
5Mil+

FIGURE 7.1 GRUMP settlement points by population size, 2000, in Colombia and sur-
rounding countries.

* A revised write-up of the GRUMP methods has been drafted, and expected to be available by fall
2008.
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Ibague
Tulua
Cali
Caloto Neiva
Santander de Quilichao
0 50 100 Kilometers
Points inside the urban extents Points within a 3 km buffer of the lights
Population Density, persons per sq km (2000)
0-1 2-50 51-250 251-500 501-1,000 1,001+

FIGURE 7.2 GRUMP inputs: administrative units along with urban extents and settlement
points, Cali, Colombia, and surrounding areas.
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Chaparral

Neiva

Caloto

Santander de Quilichao

Popayan

Population Density Urban Footprints
Persons per sq km (2000) by Population Size (2000)

0-1 5K—100K (white outline)
2-50
100K-500K
51-250
251-500 500K-1Mil
501-1,000 1Mil-5Mil
1,001+

FIGURE 7.3 GRUMP outputs: population distribution and urban extents, Cali, Colombia,
and surrounding areas.
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shows how population is reallocated when accounting for administrative area totals.
The third database renders the right panel of Figure 7.2 as a population grid (not
shown). Greater detail on these steps follows.

Unlike the population estimates associated with administrative boundaries that
have been the backbone of national censuses and significant international techni-
cal assistance, population estimation of urban places has received little scrutiny or
investment by the global community. The settlement points database (Figure 7.1)
is constructed by culling national statistical office and publicly available databases
with estimates of populated places: names, population, and geographic coordinates.
In many instances, three different data sources were required for a given place.
(Source information for each datum is retained in the disseminated GRUMP settle-
ments point database.) When it was evident how the population estimate associated
with each point was classified — city proper, agglomeration, etc. — such classifica-
tions were noted.

Next, the settlement points were spatially joined with the settlement extents and
the population assigned, or summed, if more than one point was found, as in the case
of Cali (Figure 7.2).* The name of the most populous place within the buffer was
assigned to the polygon. For points without polygons, areal extents for urban areas
were estimated based on a relationship between population size and areal extents for
the points with known parameters. (This relationship is derived from a logarithmic
regression that predicts the expected geographic size of a place, given its population
size, given a minimum number of observations, or by combining data in regional
groupings supplied by the UN Statistics Division.). Based on these estimated area
values, a circular urban area centered on the known points was created. The result-
ing polygons were then added to the existing lights-based ones to create a complete
urban extent coverage for each country.

The penultimate step was to generate a 30-arc second population distribution
raster data set. To create it, we modeled population by applying a mass-conserving
algorithm that reallocates people into urban areas, within each administrative unit.
This uses data inputs from two vector sources: (1) administrative polygons, contain-
ing the total population for each administrative unit (as indicated in Figure 7.2), and
(2) urban areas, containing the urban population for each area resulting from the
urban extent coverage (i.e., the sum of points for each extent, as shown in Figure 7.2).
The algorithm works on a country-by-country basis and accounts for the following
information: the area and population of each urban extent, the area and population
of each administrative unit, the size of the intersected areas where the urban and
administrative areas overlap, and the UN national estimates for the percentage of
the population in urban and rural areas. The goal of the algorithm is to reallocate,
or adjust, the total population in each administrative unit into rural and urban. It
follows a “do-no-harm” principle. The algorithm is set so that the least amount of
reallocation takes place, yet is applied when it is necessary to make sure that the pop-
ulation of the urban extents (as estimated by the settlement points) does not exceed

* A 3-km buffer distance was used to assign points to polygons as this is in keeping with the margin of
error inherent in the light measurement (Elvidge et al., 2004).
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that from the administrative area data. It takes the settlement points as summarized
to the urban footprints as the starting point, and adjusts to ensure that no population
estimate exceeds the maximum of the administrative areas that intersect it. A second
set of constraints is imposed to ensure balance in urban and rural population densi-
ties — that is, reallocation cannot produce population estimates of a given urban
area that would result in urban population densities that are less than rural densities
(on average). UN (2006) national-level rural/urban percentage estimates and those
from the countries are used as guidelines. When the number of administrative units
for a given urban extent was high relative to the size of the urban area (e.g., doz-
ens or more of suburban units within a medium- to large-size city), the reallocation
algorithm was not used. Those areas were gridded directly and then the population
values were assigned to the urban extents, strictly on spatial overlays, in the final
step.*

When there is only one urban area per administrative unit or when the urban area
(even if subdivided into many smaller subunits) lies wholly within the administrative
unit, the adjustment in population is trivial. GRUMP was designed in part to esti-
mate population in urban areas where no estimates exist. It is not intended as a “good
data” model. The reallocation becomes increasingly complex, however, when there
is more than one urban area, when urban areas overlap more than one administrative
area (e.g., Cali), and when large urban areas contain more than one administrative
area as shown in Figure 7.2.

The resulting map is shown in Figure 7.3, with a close-up view of Cali, Colombia,
showing the data after running the algorithm. Where urban areas are present in a
given administrative unit, the density of the administrative unit decreases after the
algorithm has been used because people are reallocated into their respective urban
areas.

The final GRUMP database is an urban mask with attributes, such as the name,
population, and land area, as shown for selected cities in Colombia in Table 7.1.
Although the administrative data in Colombia are relatively good, the size of the
units is such that the reallocation in general works well, especially for medium and
small cities. Figure 7.3 shows some cases of relatively large administrative units
with one or two cities where GRUMP has assigned people to urban areas, decreas-
ing the density of the remaining administrative unit (e.g., Santander de Quilichao
and Caloto). For example, Caloto is a small town (about 5000 persons) that is not
reported in most city lists. Yet here it is identifiable, given a population estimate and
location close to the nearest large city (Santander de Quilichao). Chapparal, a city of
nearly 200,000 persons (in 2000), is differentiated from the rest of the administra-
tive area in which it falls. This is GRUMP working as designed. In the case of Cali,
where the urban areas identified by the lights expand over several administrative
units, the estimated population of the greater Cali area is larger than estimates based
on the administrative area for Cali proper than one might find in other sources (such

* This has the effect of rendering population estimates for the units that border the city (on both sides of
the border) as an average. The GRUMP algorithm, in these instances, tends to produce a “donut” effect
and this was not employed.
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TABLE 7.1
Estimates of Population Size and Density, and Land Area for All Selected
Urban Areas Near Cali, Columbia
Estimates Derived from GRUMP
Population (2000), in Land Area (ca. 1995),  Population Density

Urban Area Name 000s in km? (persons per km?)
Cali 3020 2515 1201
Neiva 264 558 474
Chapparal 197 62 446
Santander de Quilichao 40 69 585
Popayan 27 259 761
Caloto 5 10 499

as www.citypopulation.de). Neiva, a much smaller city than Cali, similarly expands
across more than one administrative area. Once again, this is GRUMP working as
it should.*

GRUMP estimates may differ from other published estimates for a number of
reasons. In some instances, GRUMP will attribute peri-urban population to an
urban agglomeration, perhaps by increasing the population. In other instances, it
will reduce the population of a given area, if the input data referred to an admin-
istrative area (such as large metropolitan counties) that contains urban and rural
areas. An example of such is shown in Figure 7.4 and Table 7.2 for Beijing.
Although the UN Population Division comes up with estimate B for the population
of Beijing, as does the GRUMP project, the Chinese government reports many
different estimates, none of which is fully interpretable without an accompanying
map of this type. The urban portions of Beijing county are not spatially delineated
as urban without GRUMP. GRUMP assigns an urban population estimate for each
of these localities. Thus, any given urban area needs to be assessed with nearby
localities from which the lights — the footprint in GRUMP — may have been
spatially separated.

7.6 CONCLUDING REMARKS

Each of the three basic data products from GRUMP makes a contribution: the human
settlement points data attempts to resolve the classification type of locality, attaches
geographic coordinates to named, populated places, and includes settlements of much

* In Figure 7.2, it is apparent that some urban extents have no settlement points and in Figure 7.3 that
they have no population reallocated to them. (That is, their population would not differ per pixel from
that in the surrounding area.) This is because no named settlement with population was found for those
locations. As is evident from the map, these localities are smaller than those with known settlements.

¥ A variation of this figure appears in the work of Montgomery and Balk (forthcoming) and Montgomery
(2008, Figure 1, p. 761), and was developed with insight from S. Henning of the United Nations and
K.W. Chan of the University of Washington (Chan and Hu, 2003; Chan, 2007).
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Legend
Beijing City Proper Boundary Beijing GRUMP Urban Extents
Beijing City District Boundary Beijing City Proper Admin Units
Beijing County Boundary Beijing City District Admin Units

Beijing Counties Admin Units

FIGURE 7.4 The administrative boundaries of Beijing, China, with GRUMP urban extents
overlaid.

smaller sizes than other compendia. That said, the settlement points database relies
on inputs that have had only a fraction of the level of global investments in technical
assistance and standards that have been made in administrative boundary data. When
coupling points with urban extents, it becomes apparent that settlement point data in
the future will require much greater scrutiny and transparency.*

The urban extent mask (described here as having population size and names
associated with it) is more and less than the lights data on which it is based. It is
more because it “verifies” that each and every light has at least one corresponding

* 1t is possible that very finely resolved administrative data, if at the subcity level, would provide a
suitable alternative, but those data — despite the increasing availability and quality of georeferenced
administrative data — do not seem imminent at the scale of city any time soon.
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TABLE 7.2
Various Population Estimates of Beijing, Corresponding to Different
Administrative Criteria (Corresponding to Boundaries Shown in Figure 7.4)

Population
Administration Division
Type and Name Total Urban Rural % Urban

City proper Beijing Shi 2,114,586 2,114,586 - 100%
City proper Chaoyang Qu 2,289,756 2,289,756 - 100%
City proper Fengtai Qu 1,369,480 1,369,480 - 100%
City proper Shijinshan Qu 489,439 489,439 - 100%
City proper Handian Qu 2,240,124 2,240,124 - 100%
Subtotal A 8,503,385 8,503,385

City district Mentougou Qu 266,591 187,616, 78,975 70%
City district Fangshan Qu 814,367 379,882 434,485 47%
City district Tongzhou Qu 673,952 346,645 327,307 51%
City district Shunyi Qu 636,479 207,341 429,138 33%
City district Changping Qu 614,821 251,792 363,029 41%
Subtotal B 11,509,595

Subtotal C 9,876,661

Beijing county Daxing Xian 671,444 188,109 483,335 28%
Beijing county  Pinggu Xian 396,701 119,053 277,648 30%
Beijing county  Huairou Xian 296,002 116,900 179,102 39%
Beijing county Miyun Xian 420,019 128,999 291,020 31%
Beijing county  Yanging Xian 275,433 92,742 182,691 34%
Subtotal D 13,569,194

Subtotal E 10,522,464

populated place that falls inside of it. It can be argued that it is a more complete
rendering of places because it also renders settlement points that were undetected
by the light (as may be common in poorly lit parts of the world, and for small urban
extents). That said, lights with no corresponding populated places, were dropped.*
These lights may include other forms of settlement — such as industrial location —
which may be important. Future work should further evaluate the night-time lights
with this concern in mind. Whether the population associated with these urban
extents is superior to the underlying input data depends in part on the quality of the
GRUMP population grid (discussed below). That said, the extents alone could and
have already been used in any number of applications that distinguish urban from
rural land areas both in conjunction with and apart from the population estimation

* CIESIN intends to include in the final GRUMP data products two versions of the urban extent mask:
one to include all verified extents, and one that also includes all other lights. The estimated population
counts for the light type of urban extent — that could derive from a spatial overlay of the population
surface with the mask — would almost certainly produce estimates of population that are too low, and
should be used with caution.

© 2009 by Taylor & Francis Group, LLC



More Than a Name 159

(e.g., McGrahanan et al., 2005, 2007, which include additional maps of GRUMP
inputs and outputs).

The GRUMP population grid makes an important contribution for refining the
estimates of population distribution beyond what can be accomplished using admin-
istrative boundary data alone, but without using a variety of biophysical parameters
to model population: the model uses only one additional type of data for the real-
location — urban extents. In countries where they are of very good quality — finely
resolved administrative data at the level of the city — GRUMP as a reallocation
method is not necessary. (Even when the administrative data are of high resolu-
tion, a common means to identify urban contours in a consistent way — such as the
use of the lights-based “footprints” — is still necessary.) Yet, where administrative
data are of poor to average quality, and the lights are detectable, GRUMP performs
moderately well — the final extent databases identifies more than 25,000 urban
agglomerations globally. When used in conjunction with maps, it is evident why
urban population estimates associated with GRUMP differ from those given by a
variety of sources — including those that rely heavily on (sometimes geographically
large and coarse) administrative area representations of urban areas. Where both the
administrative data and the lights (or its substitutes) are poor, GRUMP just does not
have much to work with. As is generally the case, there are no perfect substitutes for
good data.

GRUMP is just a starting point to think about how to systematically identify
population and urban areas, both in time and space. There is no obvious global
“truth” — that is, a known benchmark with which to compare these estimates. The
other existing estimates of urban population do not correspond to space. As seen
here, the spatial dimension changes those estimates. Over time, GRUMP and kin-
dred approaches will be improved, reworked, and, hopefully, keep active a dialogue
for future efforts for a community of urban scholars and planners.
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8.1 DEFINING HUMAN SETTLEMENTS

According to the United Nations Population Division, because of national differences
in the characteristics that distinguish urban from rural areas, there is no internation-
ally agreed consensus on how the dividing lines between urban, suburban, and rural
settlements should be demarcated (UN, 1998). Sometimes the administrative bound-
aries of human settlements such as cities, towns, and villages are available and are
used to distinguish urban from rural — the populations within these administrative
units being classified as urban, and the populations outside of them being classified
as rural. Sometimes qualitative terminology with no precise meaning is used, for
example, “urban centers,” “major cities,” “administrative centers,” or “municipalities.”
Local inhabitants know the settlements to which these terms refer, but they are not
otherwise defined.

When definitions are based on quantitative thresholds, the minimum population
for a place to be considered urban varies greatly. For instance, in several countries
in Latin America and West Africa, the threshold is a population of 2000, whereas
in Iceland it is 200 and in countries such as Italy and Benin it runs to 10,000.
Alternatively, the definition of an urban population can be very complex, involving
the socioeconomic characteristics of the population or community (UN, 2004). For
example, in countries that are still largely agricultural, the presence or absence of
agriculture as the dominant form of economic activity may be used as the basis for
distinguishing rural from urban space.

The term “human settlement” implies the presence of both structures and people
in a bounded area. When a technically consistent method for mapping human settle-
ments is applied, it will reveal the presence of settlements in some countries that are
not classified as “urban” according to national usage. Some mapmakers refer to the
bounded area of any human settlement as “urban area,” whereas others use the term
to refer only to mapped human settlements that have been determined by one method
or another to correspond to national usage. Therefore, extreme caution should be
exercised when comparing urban extents generated by different mapping methods
[Food Agriculture Organization (FAO), 2005].

99 ¢

8.2 DIFFERING APPROACHES TO MAPPING
HUMAN SETTLEMENTS

The utility of one approach versus another for mapping human settlements depends
on the intended purpose. For associating population counts with urban extents,
approaches that bound the urban areas appear appropriate. For land use planning
in and around expanding urban areas, approaches that seek to distinguish differ-
ent land use classes within an urban area and its periphery are likely to prove more
valuable.

For some purposes, it is sufficient to know the geographic locations and areal
extents of bounded human settlements and the number of people inhabiting each
such settled area. However, the area within and around any human settlement is
actually a complex landscape of natural features, artificial surfaces, and structures,
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and it is this landscape in its entirety, and the way it changes through time, that is of
interest for urban planning.

Highly detailed local maps of land cover and land use patterns in and around
human settlements are used by managers of cities, towns, or municipalities who wish
to have visual representations of the features of the territories that they administer,
and the options they have for managing development of settled areas in the face of
rapid population growth and changing patterns of economic activity. The value of
global mapping of human settlements is that it establishes methods and standards
that can aid this effort, and provides the basis for comparative research that may
shed additional light on issues and options for national policy makers as well as for
decentralized planners and managers.

Areas with land cover resulting from human activities may be described in
terms of use, for example, settlement or agriculture, or in terms of cover, for exam-
ple, impervious surface or vegetation. Changes in land use patterns, the condition
of structures, and the presence of services that require linear constructions (roads,
railways, power grids, communications lines) or built-up objects (schools, hospi-
tals, markets) are all features of settled areas that can be studied with the use of
human settlement maps that depict the entire landscape. Mapping can show where
these services are currently available in relation to settlement size and built-up
area, and can suggest the most efficient routes for expanding water and sanita-
tion networks. Other examples of urban planning issues that can be addressed
by analyzing the characteristics of the urban landscape include analysis of run-
off patterns and peak flow characteristics of water as an input to planning drain-
age systems, and planning the construction of tarmac roads in hilly terrain so as
to avoid soil erosion resulting from inadequate provision for discharge of excess
water (FAO, 2008).

Remote sensing is the science of acquiring, processing, and interpreting images
obtained from instrumentation aboard Earth-orbiting satellites. In a map derived
from the interpretation of remote sensing imagery, each feature detected on the
Earth’s surface is represented by its spectral signature, and these unique spectral
characteristics provide the basis for interpretation, characterization, and classifica-
tion of the feature being mapped. When converting satellite imagery into grids of
interpreted features, the occurrence of each feature in each cell of the grid is calcu-
lated and expressed as a percentage share of the total surface area of the cell. A grid
that combines information about more than one feature provides the first averaging
of spectral reflectance of the phenomena being monitored, proportional to the pixel
resolution of the sensor.

Two of the most commonly used indicators of human settlement derived from
remotely sensed images are nighttime lights (e.g., reflections from city lights that are
visible when the sun is down) and artificial surfaces (e.g., reflections from artificial,
manmade constructions that cover the land and are mostly impervious surfaces such as
concrete, metal, wood, or thatch). Nighttime lights have been widely used to establish
the boundaries and extents of urban areas. Aggregating pixels containing high per-
centages of artificial surfaces can also generate areal extents for urban areas. However,
if the original data are not highly aggregated, and a large number of land cover/land
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use classes are retained for analysis, the urban landscape emerges. Box 8.1 provides
a brief summary of similarities and differences between commonly used methods for
mapping human settlements, using nighttime lights and/or artificial surfaces.

Box 8.1 Mapping Human Settlements — Similarities and
Differences between Commonly Used Methods

A. Early efforts to map human settlements

1. Populated Places layer of Digital Charts of the World (DCW) and its
refinements.
The DCW populated places layer contains polygons that have
been digitized from paper maps, and point data for a large num-
ber of human settlements for which the geographic coordinates are
known
(ESRI,; see also Danko, 1992).

2. Nighttime Lights of the World
Four types of lights are distinguished on the basis of location, bright-
ness/persistence, and visual appearance, and four different datasets
are available as a result: human settlements (cities, towns, villages,
and industrial sites), gas flares, fires, and heavily lit fishing boats.
(US NOAA; see also Imhoff et al., 1997)

B. Use of DCW polygons and Nighttime Lights by other recent mapping

efforts
1. The built-up area class in the Global Land Cover Characteristics
database (GLCC)

GLCC was developed by the United States Geological Survey
(USGS), the University of Nebraska—Lincoln, and the European
Commission’s Joint Research Centre (JRC) on a continent-by-con-
tinent basis, based on Advanced Very High Resolution Radiometer
(AVHRR) data for the year from April 1992 to March 1993, with a
nominal 1-km resolution. It was originally released to the public in
1997 and has subsequently been updated based on feedback from
users. Its built-up area layer is not derived from the imagery, but
instead is based on DCW and its refinements.

(US Geological survey GLCC dataset)

2. Treatment of built-up area by LandScan™

The original LandScan™ Global Population Database was made
public in 1998 and updates have been released annually since 2000,
as part of the Oak Ridge National Laboratory Global Population
Project for estimating ambient populations at risk. LandScan
apportions census counts to each cell in a 30 arc-second grid, based
on likelihood coefficients that are, in turn, based on proximity to
roads, slope, land cover, nighttime lights, and other information.

© 2009 by Taylor & Francis Group, LLC



The Africover and PMUR Datasets 167

The GLCC classification system was used as the starting point for

developing a LandScan Land Cover Database as an input for run-

ning its population distribution model. For urban area, however,
the GLCC built-up area class was replaced with two new, greatly
improved urban classes, namely,

(i) A developed urban class composed of GLCCs built-up area
cells from DCW plus all cells included in the Census Bureau’s
P-95 circles, and

(i1) A partly developed class representing suburban areas, small
towns, and scattered industries, airports, and other lit objects,
and containing all cells with a frequency value of 90% or
greater from Nighttime Lights of the World.

In 2002 global AVHRR land cover data were replaced with

MODerate resolution Imaging Spectroradiometer (MODIS) land

cover data. Extensive use has been made of Controlled Image Base

imagery for verification and validation, for refining urban built-up
areas, and for adding thousands of smaller villages and populated
places.

(Bright, 2002; see also Dobson et al., 2000)

3. Urban extents generated by the Global Rural Urban Mapping Project

(GRUMP)

To prepare its urban/rural population grid Colombia University’s

research team at the Center for International Earth Science

Information Network (CIESIN) created two intermediate products

(i) A human settlements database of about 55,000 settlement points
with an estimated population of 1000 or more, and for which
population counts and geographic coordinates were obtained
from official sources, Gazetteers, and the DCW populated
places layer.

(ii) An urban extent database of more than 21,000 settled areas
for which the physical extents have been derived from the
Nighttime Lights data set for the period 1994-1995, the 1992
DCW Populated Places layer and cities shown in Australia’s
Tactical Pilotage Charts, IPFRI.

(CIESIN, IFPRI, World Bank, and CIAT, 2004)
4. Urban area derived from MODIS 1-km data for 2002

In the Boston University (BU)-MODIS approach, a team of BU

scientists generated a global map of urban area in 2002, based

on the fusion of multiple data sources. The primary source was
the remotely sensed 1-km data from MODIS — a key instrument
aboard the Terra AM and Aqua PM satellites of the U.S. National

Aeronautics and Space Administration’s Earth Observing System.

Due to similarities in the spectral signatures of built-up area and

barren area at the 1-km resolution of the 2002 data, classifications

based on MODIS alone resulted in confusion between these two
land cover classes. Therefore, two ancillary sources were also used
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to generate the urban area map, namely, the Nighttime Lights data
and the population density data from CIESIN’s Gridded Population
of the World (GPW) — a database that allocates population counts
to the lowest level administrative units for which CIESIN was
able to obtain official boundaries and census data, and distributes
population counts evenly across all grid cells in any given admin-
istrative unit.
(Schneider et al., 2003; USGS Archive Center)

5. Urban and rural settlement grids in FAO’s Poverty Mapping Urban
Rural (PMUR) database
To derive a rural population distribution grid appropriate for global
analysis of poverty and environment linkages in rural areas, FAO
chose to use LandScan rather than GPW as its base data source,
because the population densities in LandScan take land cover
into account. In order to differentiate the global distribution of
rural and urban populations, FAO developed and applied an urban
mask, using Nighttime Lights of the World 2000 to identify the
location and extent of urban areas, and applying UN urban popu-
lation data for each country for the year 2000 as a threshold that
the aggregate population of identified urban areas was not allowed
to exceed. A rural settlements class was also created, including
smaller settled areas that did not meet the urban class criteria and
all other pixels in the grid having a population density greater than
2000 per km?2.
(FAO, 2005, 2006; GEONetwork)

6. Global Land Cover 2000 (GLC2000)
The Global Vegetation Monitoring Unit (GVM) of the JRC of
the European Commission, in collaboration with more than 30
research teams, developed a global land cover product for the
year 2000 (GLC2000) by applying the Land Cover Classification
System (LCCS), developed by FAO and UNEP as part of the
Africover project, to vegetation data from the SPOT satellite, at
I-km resolution. The LCCS allows local and regional vegetation
types to be defined at any desired detail by adding further attri-
butes foreseen in the LCCS. For GLC2000, each of the 19 defined
regions was mapped by local experts, which guaranteed an accu-
rate classification, based on local knowledge. The global legend
consists of a limited number of land cover classes, derived by the
aggregation of the regional and subregional classes provided by
the GLC2000 partners.
For urban area, documentation for Africa and South America
regions indicates that nighttime lights were used as a seeding
layer to locate the presence of large urban areas in the SPOT veg-
etation data set. The procedure involved creating a mask from
the stable lights data to extract the corresponding areas from the
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SPOT classes. Visual interpretation was used to retain those classes
related to urban areas.
(EC/JRC/GVM; see also EC/IRC, 2002, 2003a, 2003b)

7. GlobCover
GlobCover is an initiative of the European Space Agency (ESA),
in partnership with JRC, EEA, FAO, UNEP, Global Observation
of Forest Cover and of Land Dynamics, and IGBP (International
Geosphere—Biosphere Program). The GlobCover project aims at
producing a global land cover map at a resolution of 300 meters,
using input observations from the MERIS sensor on board ESA’s
ENVISAT environmental satellite. The Land Cover Classification
is derived by an automatic and regionally tuned classification of a
time series of the MERIS Full Resolution Composites, using the 22
global land cover classes of the LCCS. Class labels are assigned by
cross-referencing the classification with a database of regional land
cover maps and a set of decision rules. For many land cover classes,
this new product updates and improves upon GLC2000, because
of the finer spatial resolution. However, as regards the urban area
class, the cross-referencing procedure produces an urban layer in
GlobCover similar to GLC2000.
(Arino et al., 2007; see also ESA GlobCover Project)

C. Recent advances in urban mapping methods
1. History Database of the Global Environment (HYDE)

This database attributes historical population data from 1700 to
2000 to subnational administrative units, using a new global map
of administrative boundaries at the subnational level developed
at the National Institute for Public Health and the Environment
(RIVM) in the Netherlands. The map comprises 222 countries,
divided into 3441 administrative units. Where possible, histori-
cal population data were collected at the ISO3166-2 level or con-
verted to match that level. Important sources for the subnational
population data were the Populstat database (Lahmeyer, 2004)
and the World Gazetteer (2004). Urban data are captured only
where a mapped subnational administrative unit is an urban
district. For a complete description of the methodology, see
Goldewijk (2005).

(Netherlands Environmental Assessment Agency; see also
Lahmeyer, 2004; World Gazetteer, 2004; Goldewijk, 2005)

2. Global Impervious Surface Area Map

Similar to the PMUR, this map uses nighttime lights data and pop-
ulation distribution data from LandScan to model the global dis-
tribution of impervious surface areas. It was produced by NGDC’s
Earth Observation Group as a contribution to the quantification of
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the human impact on the terrestrial carbon dynamics. However, it
shares many of the characteristics of other global maps of urban
area, based on nighttime lights.
(Elvidge et al., 2007; US NGDC, 2007)

3. Urban area derived from MODIS 500m data for 2005
According to preliminary documentation, anew urban map based
on 500m MODIS data for 2005 will soon be released that uses
remotely sensed data in association with a global stratification
of “urban ecoregions” without reliance on external datasets to
constrain the classification. The datasets are expected to pro-
vide a foundation for refined representations of global urban
land use.
(See Schneider et al., Chapter 5 of this book)

Detailed descriptions of Nighttime Lights, GRUMP, and BU-MODIS approach are dis-
cussed in Chapters 2.3, 2.4, and 3.1.

8.3 THE AFRICOVER METHOD FOR DETERMINING
LOCATIONS AND EXTENTS OF HUMAN SETTLEMENTS
AND MAPPING URBAN LANDSCAPES

The overall goal of the Africover initiative is to develop a digital goeoreferenced
database on land cover and baseline geographic data for the whole Africa. The
first Africover project was operational from 1995 to 2002, with financing from the
Italian Cooperation. It developed the FAO-United Nations Environment Programme
(UNEP) Land Cover Classification System (LCCS) and implemented the Eastern
African module (FAO-Africover, 2003a).

8.3.1 StrucTture oF THE FAO-UNEP LCCS
DEVELOPED BY THE AFRICOVER PROJECT

The LCCS developed by the Africover project is the only universally applicable
classification system for land cover that is in operational use at present. It enables
a comparison of land cover classes regardless of data source, economic sector,
or country. Work began in 1993, when UNEP and FAO organized a meeting to
catalyze coordinated action toward harmonization of data collection and man-
agement, and to take a first step toward an internationally agreed reference base
for land cover and land use, as called for by Chapter 12 of Agenda 21. At about
the same time, funding for the Africover initiative was coming on stream from
the Italian Cooperation to map land cover, initially for Eastern Africa and the
Riparian Nile, and eventually for the whole of Africa, and a land cover reference
system for operational use was needed. Thus, the Eastern Africa module of the
Africover Program took on the task of developing an LCCS that could be used
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not only by the project, but also as a more general reference system to assist
users worldwide in harmonizing their interpretations of land cover from satellite
imagery.

After the release of the original version of the FAO-UNEP LCCS in 2000, the
concepts and system software have undergone two further revisions and the approach
is now being promoted globally through the Global Land Cover Network (GLCN),
which seeks to perpetuate the uptake of LCCS standards on a global basis. Today, it
is establishing norms that all countries and regions can adhere to, without sacrificing
the specificity needed to address local concerns.

An a priori classification system achieves standardization by requiring that all the
classes have to be defined in advance. Although standardization of land cover classes
was an objective of the Africover project, putting in place a complete a priori system
for consistent description of land cover occurring anywhere in the world would have
required creating an enormous number of predefined classes. Therefore, the project
introduced an innovative approach for developing an LCCS that enhances the stan-
dardization process but minimizes the problem of dealing with a very large amount
of predefined classes (FAO and UNEP, 2005).

The new innovative approach means that instead of predefining the classes, it
predefines the classification criteria that uniquely identify the classes. The concept
is based on the presumption that any land cover class, regardless of its type and
geographic location, can be defined by a set of preselected independent diagnostic
attributes, the classifiers. The number of classifiers used determines the detail with
which the land cover is classified. Thus, a larger number of classifiers is needed when
more detailed classification (description) of land cover is required.

All classifiers are coded, and each land cover class is defined by the string of
codes for the classifiers used. Each class is also given a standardized descrip-
tive name and a unique numerical code for use in geographical information
systems.

The heterogeneity of land cover does not allow the same set of classifiers to be
used in defining all land cover types. Therefore, these classifiers are tailored to fit
eight major land cover groups. This has greatly reduced the number of classifiers
needed for the precise definition of any land cover class, and thus significantly sim-
plified the classification procedure. However, it required designing the LCCS imple-
mentation in two phases.

The dichotomous classification phase consists of three classification levels, which
define eight major land cover classes in the third level, as shown in Table 8.1. The
classification criteria used in the dichotomous phase are the presence of vegetation,
edaphic condition, and artificiality of land cover. In the modular-hierarchical clas-
sification phase, the selection of classifiers and their hierarchical arrangement are
tailored to each of the eight major land cover classes of the dichotomous classifica-
tion phase. Thus, eight different classifier sets are used in this phase. The user is not
obliged to use all classifiers. Depending on the required level of land cover informa-
tion, the classification can be stopped at any time and the corresponding land cover
class determined.

© 2009 by Taylor & Francis Group, LLC



172 Human Settlement: Experiences, Datasets and Prospects

Table 8.1 Dichotomous Classification Phase of the LCCS

First Level Second Level Third Level
Primarily vegetated Terrestrial Managed terrestrial areas

Natural and seminatural terrestrial
vegetation

Aquatic or regularly  Cultivated aquatic areas

flooded Natural and seminatural aquatic
vegetation
Primarily nonvegetated Terrestrial Artificial surfaces
Bare land

Aquatic or regularly  Artificial water bodies
flooded Natural water bodies

Snow and ice

Land cover classification based on preselected sets of classifiers can be further
extended when a more detailed description of land cover is required, by applying
two other sets of optional classification attributes, which provide additional descrip-
tion of land cover characteristics, but are not used to define the class. These are
environmental attributes, such as climate, landform, altitude, soils, lithology, and
erosion, and specific technical attributes, for example, the description of crop types
in managed terrestrial areas, floristic aspects of natural and seminatural terrestrial
and aquatic vegetation, salinity of artificial and natural water bodies, and so forth.

In July 2008, the International Organization for Standardization (ISO) distributed
a proposed Draft International Standard for an LCCS (ISO 19144-2) for review and
comment. The purpose of the ISO 19144-2 standard is to define a common refer-
ence structure for the comparison and integration of data for any generic LCCS.
Following the FAO-UNEP approach, the ISO draft defines a Land Cover Meta
Language (LCML) that provides a general framework of rules from which more
exclusive conditions can be derived to create specific classification systems. It is a
language based on physiognomy and stratification of both biotic and abiotic materi-
als. The system may be used to specify any land cover feature anywhere in the world,
using a set of independent diagnostic criteria that allow correlation with existing
classifications and legends. Moreover, any national or multinational LCCS can be
described in terms of the LCML (ISO, 2008).

8.3.2 DerNiTION oF THE BuitT-Up URBAN AREA LAND
Cover Crass IN THE FAO-UNEP LCCS

The FAO-UNEP LCCS classifies all artificial surfaces as belonging to a land cover
class called built-up area. This class includes:

1. Linear built-up area
* Roads
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e Railways
e Communication lines, power lines, and pipelines

2. Nonlinear built-up area
e Urban (populated) area
* Industrial and other areas related to trade, manufacturing, distribution,
and commerce, including built-up objects*

3. Non-built-up area
e Waste dump deposits
e Extraction sites

In the FAO-UNEP LCCS, urban areas are nonlinear built-up areas covered by artifi-
cial, often impervious structures adjacent to or connected by streets. This land cover
class represents centers of human population. It usually occurs in combination with
industrial and/or other built-up area and urban vegetated area. The density of urban
area is based on the occurrence of impervious surfaces compared to permeable sur-
faces, and may be high, medium, or low (FAO and UNEP, 2005).

8.3.3 THE ArriICOVER METHOD OF LAND COVER INTERPRETATION

The Africover projectapplied the FAO-UNEP LCCS to develop detailed land cover grids
for each of the 10 countries included in the East Africa module (Burundi, Democratic
Republic of Congo, Egypt, Eritrea, Kenya, Rwanda, Somalia, Sudan, Tanzania, and
Uganda).f An important aspect of the methodology is that land cover is mainly derived
from visual interpretation of high-resolution satellite images (all Landsat in origin) that
have been digitally enhanced, using techniques such as geometric rectification, prin-
cipal component analysis, and contour stretching. In the East Africa module, national
photo interpreters were recruited to implement the methodology.

In the first step, they selected and georectified the satellite imagery and collected
ancillary data on the different aspects influencing land cover in their countries. This
became the basis for the development of a virtual legend of land cover classes, based
on the FAO-UNEP LCCS, which was used to start the interpretation. The second step
consisted of preliminary photo interpretation of the satellite images. This involved:

e Marking on the false-color image the boundaries of areas or aerial photo-
graphs to be used for identifying land cover classes.

o Iterative extrapolation of the identified classes to all parts of the image
expressing similar characteristics (color, structure, and texture.).

* Standardized FAO-UNEP LCCS list of built-up objects includes the following: aerodrome; airport;
breeding center; cemetery; commercial area (shopping, warehousing, wholesaling, retailing); cul-
tural, entertainment, and recreation area; heavy industrial area; historical site; hospital premises; light
industrial area; military facilities; port area; power generation plant; refugee camp; religious site;
school premises; sewage treatment plant; sports and leisure facilities; station(including depots); trans-
portation facilities — bus area; transportation facilities — car park; urban playgrounds with structures;
water treatment facilities; other.

T A technical description of the methodology may be downloaded from the Africover website (FAO-
Africover, 2003b).
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After the preliminary interpretation, those areas that had not been definitively delin-
eated or where there were still outstanding doubts were identified and divided into
two groups:

* Areas where ground truth surveys were the only solution.
* Areas where it was considered sufficient to study aerial photographs.

Because their spectral signature is close to that of bare areas, urban areas were
considered as features that are hard to interpret, so validating the accuracy of visual
interpretations was considered especially important for this land cover class.

As well as conducting ground truth surveys to provide a conclusive answer to
any unresolved questions of interpretation, they were also used to provide a general
check on the quality of the results of the photo interpretation. The final interpretation
involved statistical analysis of the field data, locating the actual GPS points, review-
ing the checked classes, extrapolating the results onto the interpretation sheets,
introducing needed corrections, and aligning the interpretation with the edges of the
images. This edge matching had to assure that coding and polygons were seamless
in the full land cover interpretation coverage.

After completing the final interpretation, the following checks were made to
assure its quality:

* Homogeneity of the interpretation per scene and between the different ones.

» Consistency of the interpretations of the different interpretation teams.

* Consistency of codification of the various units in comparison with the
false-color images.

* Ensuring that only a single code has been assigned to each unit (closed
polygon).

* Ensuring that adjacent polygons have different codes.

e The size limit of the smallest units, according to the Variable Minimal
Mappable Area, assuring the level of detail of the interpretation.

Finally, the results of the Africover land cover interpretation had to be digitized
for incorporation into the Eastern Africa database and for production of thematic
maps at varying scales and with different levels of generalization.

8.4 COMPARISON OF URBAN AREA EXTENTS FROM POVERTY
MAPPING URBAN RURAL DATABASE AND AFRICOVER

The method used to generate the Poverty Mapping Urban Rural (PMUR) database
method described in Box 8.1 establishes boundaries for urban extents, but does
not distinguish between different types of land cover that occur within the urban
areas. In the initial step, nighttime lights data were used to establish the location
and extents of urban area. To compensate for overestimation of the actual extents
of urban areas in heavily lit areas, PMUR used UN urban population data to cre-
ate a threshold. In countries where application of the threshold excluded pixels
with population density greater than 2000 per km2, PMUR classified these pixels
as rural settlements (FAO, 2005).
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By contrast, as discussed above, the built-up urban area class generated by
Africover relies on the visual interpretation of the spectral signature of artificial sur-
faces. Although it is labor-intensive and relatively costly, the LCCS approach used by
Africover produces a richly detailed output that is not matched by any other human
settlement mapping method currently in use.*

The PMUR method establishes boundaries for urban extents that do not dis-
tinguish between different types of land cover that occur within the urban areas,
whereas the Africover method distinguishes built-up urban (populated) area from
other types of urban area. Consequently, it is to be expected that the extents gener-
ated by aggregating only the built-up urban area class from Africover will be smaller
than the urban area extents generated by PMUR; data for the year 2000 show this to
be the case (Table 8.2).

Nevertheless, although the extent of settled area generated by PMUR is much greater
than that generated by Africover, both methods place human settlements in approxi-
mately the same locations. Comparison of the distribution of urban area obtained by
PMUR and that obtained by Africover for the Nile delta region show a nontrivial cor-
respondence. Results of the chi-square test confirming this are reported in Box 8.2.

Table 8.2 Settled Area Extents for 10 Eastern African Countries, 2000

Urban Area from Settled Rural Area  Built-Up Urban Area

Country Name PMUR from PMUR from Africover
Extent (km?) Extent (km?) Extent (km?)
Burundi 309 141 101
Congo, Democratic 5203 21 2450
Republic of
Egypt 3332 6346 2451
Eritrea 297 144 146
Kenya 5601 890 613
Rwanda 293 328 79
Somalia 182 63 133
Sudan 17,144 - 3500
Tanzania, United 9325 - 2844
Republic of
Uganda 1822 626 394

The correspondence is depicted visually in Figures 8.1 and 8.2. Figure 8.1 shows
urban and rural extents in the Nile Delta obtained by PMUR. In this figure, bounded
urban areas are shown in black, and pixels with population density of more than
2000 per km?, denoting rural settlements, are shown in red. The remainder of the
map image, colored green, is classified simply as rural area.

* Although not yet released at the time of writing, preliminary documentation for the new MODIS
500-m urban map indicates the interest of the authors in eventually mapping the type and percent
coverage of vegetation within urbanized areas, but so far, the focus of the work has been on refining
the mapping of urban extents, not on refining the characterization of urban landscapes.
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BOX 8.2 Chi-Square Test of Degree of Independence of Urban
Area Generated by PMUR and by Africover in the Nile Delta

Test values where:

x> = 371.5603
Threshold = 6.64
p=0.01

df = 1 (degree of freedom)

PMUR Africover Total

Observed Frequencies

Africover 796 72 868
PMUR 721 649 1370
1517 721 2238
Expected Frequencies
Africover 588 280 868
PMUR 929 441 1370
1517 721 2238
RESULTS
Chi-square (observed value) 369.773
Chi-square (critical value) 6.635
df 1
p-value < 0.0001
alpha 0.01

Chi square distribution

XZ

INTERPRETATION

As the computed p-value is lower than the significance level (alpha = 0.01), one
should reject the null hypothesis that the rows and the columns of the table are
independent, and accept the alternative hypothesis that there is a link between
the rows and the columns of the table. The risk to reject the null hypothesis,
while true, is lower than 0.01%. This shows that there is a statistically signifi-
cant relationship between the number and location of urban areas mapped by
PMUR and those mapped by Africover in the Nile Delta.
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Urban Settlements
Urban extents
Rural settlements

Rural area

FIGURE 8.1 (See color insert following page 324.) Urban extents and rural settlements in
the Nile Delta (FAO-PMUR), 2000.

Urban Settlements
Build up in Africover
Urban extent in PMUR

FIGURE 8.2 (See color insert following page 324.) Overlay of built-up area from Africover
on urban extents from PMUR in the Nile Delta, 2000.

In Figure 8.2, the built-up urban area land cover class from Africover for the Nile
Delta (shown in black) is overlaid on the bounded urban area extents from PMUR
(shown in yellow). This figure shows very clearly how Africover produces smaller
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extents for large metropolises, but picks up and classifies as urban many of the loca-
tions classified as rural settlements by PMUR.

8.5 USE OF AFRICOVER GRIDS TO DETECT LAND COVER
CHANGE IN AND AROUND HUMAN SETTLEMENTS:
SOME EXAMPLES FROM EASTERN AFRICA

For some types of land-cover change analysis, a high level of detail is desirable. In other
instances, it is more revealing to report results for only a few highly aggregated classes.
The hierarchical classification method used by Africover permits the user to aggregate
land cover classes according to need. Illustrations of both disaggregated and aggre-
gated approaches for detecting land cover change in the Nile Delta, and examples of an
aggregated land cover change analysis for a study area encompassing the Egyptian city
of El Mahala El Kobra and for ten capital cities in Eastern Africa are given below.

8.5.1 NiLe DELtA

An FAO-led pilot project undertaken under the auspices of the Global Terrestrial
Observing System and the GLCN has been working to define a robust methodology
to analyze and assess land cover changes in delta areas that would be applicable
worldwide. Initial results for the Nile Delta are reported by Latham (2006). The
study carried out a photo interpretation of satellite imagery for four periods — 1972
(Landsat MSS), 1984 (Landsat TM), and 1997 and 2000 (Landsat ETM) — using
the Africover methodology and 68 land cover classes defined on the basis of the
FAO-UNEP LCCS. The 1997 interpretation already prepared by the Africover proj-
ect was used as a baseline, allowing about 70% of time saving in the interpretation
phase.

Figure 8.3 shows the continuous land cover image for the 68 different land cover
classes generated by the Africover approach for the Nile Delta in the year 2000. As
the number of classes is very large, the same color is assigned to more than one land
cover class in the map image. Therefore, for an accurate interpretation of the map,
it is necessary to use the unique LCCS code assigned to each polygon, and not the
colors. The legends for Figures 8.4 and 8.5 contain the codes used in the illustrative
examples presented below.

The utility of the map is in the small-area detail. In the two examples that follow,
significant changes in land use patterns have occurred in areas that are not classified
as urban, but that are almost certainly affecting the dynamics of growth and develop-
ment in the nearby towns and cities.

Figure 8.4 illustrates human capacity to transform inhospitable environments
into habitable settled areas. In 1972, the area shown in the zoom was covered
mainly with sparse low forbs (herbaceous nonwoody plants) on waterlogged soil
with salt crust (4FRLW-Z), adjacent to a natural lake at the top (§WP) and com-
bined with natural lakes in the lower half (4FRLW/8WP). Rain-fed herbaceous
crops were grown on small fields on bare, deep stony soil only in a small area in
the lower right-hand corner of the zoom (6ST1D/HR14). Bare rock with a thin sand
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FIGURE 8.3 Continuous land cover in the Nile Delta, 2000.

layer covered most of the upper part of the top left-hand quadrant (6RL), with a
belt of waterlogged soil (AFRLW-Z) surrounding a built-up urban area on loose
and shifting sand in the far corner (SU/6L). By 2000, the waterlogged area had
been converted into artificial lakes and reservoirs (7WP) and fish ponds (7TWP-Y),
the area planted to rain-fed herbaceous crops on small fields on bare, deep stony
soil had expanded, the bare rock and waterlogged soil in the upper part of the top
left-hand quadrant had given way to rain-fed tree crops on small fields, and the
urban area had been stabilized and was no longer sitting on loose, shifting sand
(5U). These transformations represent not only change but also improvement, both
for the environment and for the economic utility of the natural resource base of
the area.

In 1972, the area shown in the zoom for Figure 8.5 was covered mainly with bare,
deep stony soil (6STID) and bare rock with a thin sand layer (6RL), with a small
amount of bare, shallow stony soil (6ST1H). By 2000, the bare, shallow stony soil
was covered with small fields on which an irrigated herbaceous crop and an addi-
tional herbaceous crop were being cultivated (6STIH/HR3HQ57); a small portion of
the bare rock with thin sand layer and a large portion of the bare, deep stony soil had
been converted to a combination of an irrigated and an additional herbaceous crop
on small fields and an irrigated tree crop on medium fields (HD3HQS57/TMS57V).
In some patches of the larger area there are no tree crops, and the area is covered
entirely with irrigated and additional herbaceous crops on small fields. Not shown
in the zoom but appearing as a green patch in the larger image just to the left of the
zoom in the second row of Figure 8.5, a built-up urban area appears (5U), illustrating
how the expansion of human settlements and the expansion of cultivated area have
gone hand in hand throughout much of the deltaic zone.

Some types of analysis, however, do not require such a high level of detail.
Therefore, the hierarchical classification method used by Africover also permits the
user to aggregate land cover classes according to need. Figure 8.6 shows a four-class
aggregation that has been created for the Nile Delta to investigate broad trends in land
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2000 SATELLITE IMAGERY 1972
2000 VISUAL INTERPRETATION 1972
2000 DETAIL 1972

FIGURE 8.4 (See color insert following page 324.) Transformation around the Nile Delta
lagoon, changes from 1972 to 2000.
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2000 SATELLITE IMAGERY 1972
2000 VISUAL INTERPRETATION 1972
2000 DETAIL 1972
HD3HQ57
[ 6sTID!
HD3HQ57/TM57V/
6STID
HD3HQ57
L
6RL
6RL
6ST1H
HD3HQ57/TM57V 6ST1H/HR3HQ57
6RL Bare rock with a thin sand layer
I 6ST1D Bare soil stony (deep soil)
6ST1H Bare soil stony (shallow soil)
[0 6ST1H/HR3HQ57  Bare soil stony (shallow soil) / Irrigated herbaceous crop (1 additional herbaceous crop),
small fields
HD3HQ57 Irrigated herbaceous crop (1 additional herbaceous crop), small fields

HD3HQ57/TM57W  Irrigated herbaceous crop (1 additional herbaceous crop), small fields / Irrigated tree crop,
meduim fields

FIGURE 8.5 (See color insert following page 324.) Land reclamation in the Nile Delta,
changes from 1972 to 2000.
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1972 Agriculture
Urban areas
Natural vegetation

Bare soil

2000

FIGURE 8.6 (See color insert following page 324.) Land cover change in the Nile Delta
from 1972 to 2000, Africover aggregations.

use patterns for the entire area. The figure illustrates the extent to which both urban
area and agricultural area in the Nile Delta have expanded over the past 30 years,
mostly through a process of land reclamation where the soil was previously barren.

Statistical results of the assessment of changes in land cover in the delta over the
30-year period show that urban area increased from 2.0% to 3.4% of the total del-
taic area of approximately 55,000 km?2, and agriculture increased from 33% to 45%
(Figure 8.7). Compensating reductions came from bare soil, which dropped from
50% to 39% of total area, from natural vegetation, which dropped from 10% to 7%,
and from natural water, which dropped from 4.3% to 3.5%. Artificial water, on the
other hand, increased from 0.5% to 2%. This was due to a decrease in the size of a
natural lagoon and an increase in the practice of aquaculture and agriculture around
the lagoon — a typical transformation of agricultural activity in an urban periphery
where natural water bodies occur.

8.5.2 City ofF EL MAHALA EL KoBrA, EGYPT

Results from the standard approach being developed for analysis of land cover
change in and around urban areas in Africover countries and the Egyptian city of El
Mahala El Kobra are presented in this section (see Adam, 20006, for detailed descrip-
tion of the approach). For each settlement to be analyzed, an arbitrary study area
will be defined that encompasses the named city and its environs, and a land cover
change detection map for the study area will be generated. Figure 8.8 shows the
change detection map for El Mahala El Kobra for the period 1984-2002, whereas
Figure 8.9 depicts the growth in built-up urban area and compensating area reduc-
tion for other land cover classes in each study area. Underlying statistical data (Table
8.3) indicate that vegetated area decreased by 11.2%, with about half of the loss
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Agriculture
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FIGURE 8.7 Graphic representation of land cover change in the Nile Delta from 1972 to

2000.

Legend

Vegetation (no change)
Vegetation to bare
Vegetation to urban
Vegetation to water
Urban (no change)
Urban to bare
Urban to vegetation
Urban to water
Bare (no change)
Bare to urban

Bare to vegetation
Bare to water
Water (no change)
Water to bare
Water to urban
Wiater to vegetation

FIGURE 8.8 (See color insert following page 324.) Land cover change in the Egyptian

city of El Mahala EI Kobra from 1984 to 2002, Africover aggregations.
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FIGURE 8.9 Graphic representation of land cover change in the Egyptian city of El Mahala
El Kobra from 1984 to 2002.

going into irrigated area (shown as water on the map) and the other half into urban
area. On the other hand, 60% of the area classified as water in 1984 was reclaimed
for agriculture during the period under review. Urban area increased by nearly 45%,
with about two-thirds of the increase coming from vegetated area and one-third
from bare area.

Table 8.3 Land Cover Change in and around El Mahala El Kobra,

1984-2002
Bare Area Urban Area Vegetated Area Water
1984 area (km?) 300.54 1323.07 7680.64 250.91
2002 area (km?) 121.70 1912.85 6824.11 696.50
Gain/loss (km?) -178.84 589.78 —-856.53 445.59
Percent change (%) -59.5 44.6 -11.2 177.6

8.5.3 CaritaL CiTies OF EASTERN AND NORTHERN AFRICA

The standard approach has also been applied to develop a comparative analysis of
land cover change for selected capital cities and their environments in Northern and
Eastern Africa, from the mid-1980s to around 2000. Whereas the Africover method
generates vector images, the data reported in Table 8.4 come from a digital inter-
pretation of the satellite imagery. Urban areas increased in the peripheries of all
capital cities for which comparative data was available. However, the data show sig-
nificant differences in the rate of increase, ranging from 9% for Asmara to 74% for
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Bujumbura over the total observation period, and from 1% to 19% annually. Eastern
and Northern African capitals with urban area growth rates in excess of 40% over
the 15-year period include Bujumbura, Nairobi, Khartoum, Kampala, Cairo, and
Lilongwe. In Bujumbura, Cairo, and Nairobi the rate of expansion in urban area is
three times higher than the average annual growth rate in national urban popula-
tion, and in Khartoum it is twice as high (see UN Population Division, 2007, for
urban population growth rates). Data such as these indicate where the most impor-
tant magnets for urban in-migration in the Eastern and Northern Africa sub-regions
are located and can help policy makers prioritize investments in urban infrastructure
accordingly.

8.6 CONCLUDING REMARKS

Unlike the statistical or modeling approaches typical of other methods that have
been developed to map human settlements on a global scale, the visual interpretation
approach developed by the Africover project (outlined above) is a labor-intensive
interpretation method best suited for classification work at national or subnational
scales. Software has since been developed that permits several of the steps in the
interpretation process to be automatically performed. Nevertheless, validation by
the human eye remains essential, particularly for the detection of artificial surfaces,
which have a spectral signature very similar to that of bare areas.

Global mapping using this method will require building up a set of compati-
ble national and regional products that can eventually constitute the tiles of a har-
monized global map. A new GlobCover map is currently under production from
medium resolution imaging spectrometer (MERIS) data at a resolution of 300 m,
by the European Space Agency in collaboration with European Commission-Joint
Research Centre, FAO, and UNEP, among others. It is expected to make further
methodological advances in the application of this approach.

In the FAO-UNEP LCCS, built-up urban area is considered to represent centers
of population, irrespective of size. When boundaries are imposed where concentra-
tions of urban built-up area are found, it is possible to estimate urban area extents
and associate population counts for each known center of population with its mapped
location and extent. As discussed above, it is also possible to investigate relation-
ships between the built-up area that has been detected, and other features of the
urban landscape represented by other land cover classes. It is this latter aspect of
human settlement mapping, based on LCCS, that makes the approach attractive for
planners.

A particularly interesting finding from the set of cases that were presented is that
expansion of urban area is often accompanied by expansion rather than reduction
in agricultural area in the urban periphery. An increase in the presence of artificial
water bodies has also been observed in the Nile Delta. Besides conversion of bare
or open area to built-up area, loss of natural vegetation and tree cover are also com-
mon. The degree to which this pattern of change is or is not common to all expanding
urban areas merits further study, as do underlying reasons for observed patterns of
change and their environmental consequences.
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Human beings tend to cluster in spatially limited habitats. Today, more than half
of the world’s population lives in urban areas, which occupy, in aggregate, less than
5% of the world’s land area. Sprawl on the urban fringe and exurban development are
two of the more conspicuous signs of urban change, but structural change permeates
urban areas through continuous processes of intensification of use, decay, and devel-
opment, and aging urban infrastructures are undergoing continuous replacement and
change. Thus, urban areas are in a constant state of flux that reflects both growing
urban populations and the evolution of urbanizing technologies.

According to the forthcoming Land Theme Report of the Integrated Global
Observing Strategy (IGOS) (Townshend et al., 2008), “global remote sensing of
human settlements can significantly improve decision making in a number of appli-
cation areas, including:

e Spatial modeling of population variables such as population and settlement
density (both urban and rural), land use patterns, civil infrastructure, and
some types of economic activity;

e Improved modeling of the flow of food, water, energy, and disease vectors,
and their consequences for natural systems, including ecosystem and plan-
etary metabolism;

e The location and density of infrastructure for use in hydrologic modeling,
flood prediction, the assessment of land use and land use change, analysis
of human impacts on biodiversity, and threats to public heath;

e Monitoring, management, and mitigation of natural disasters;

e Urban planning and more effective location decisions and development of
support infrastructure; and

e Spatial modeling of atmospheric emissions associated with fossil fuel con-
sumption and other anthropogenic activities.”

The report identifies a suite of remotely sensed product types that would make
these applications possible and challenges the international community to make
the generation of these products a priority for future work on human settlement

mapping.

REFERENCES

Adam, B.E.S.S., An assessment of the physical growth of greater Khartoum, Sudan, using
remote sensing and GIS techniques, Ile-Ife Nigeria, African Regional Centre for Space
Science and Technology Education in English (ARCSSTEE), PMB 019 OAU, 2006.

Arino, O., Leroy, M., Ranera, F., Gross, D., Bicheron, P., Nino, F., Brockman, C.,
DeFourny, P., Vancutsem, C., Achard, F., Durieux, L., Bourg, L., Latham, J., Di
Gregorio, A., Witt, R., Herold, M., Sambale, J., Plummer, S., Weber, J.-L., Goryl,
P., and Houghton, N., GlobCover — A Global Land Cover Service with MERIS,
2007. Available online at: http://www.dup.esrin.esa.int/files/project/131-176-131-
25_2007510152516.pdf.

Bright, E.A., LandScan Global Population 1998 Database Documentation, 2002. Available
online at: http://www.ornl.gov/sci/landscan/landscan Common/landscan_doc.html.

© 2009 by Taylor & Francis Group, LLC



188 Human Settlement: Experiences, Datasets and Prospects

Center for International Earth Science Information Network (CIESIN), Columbia University;
International Food Policy Research Institute (IFRPI), the World Bank, and Centro
Internacional de Agricultura Tropical (CIAT), Global Rural-Urban Mapping Project
(GRUMP): Gridded Population of the World, version 3, with Urban Reallocation
(GPW-UR), Palisades, NY, USA, 2004. Available online at: http://beta.sedac.ciesin.
columbia.edu/gpw/global.jsp.

Danko, D.M., The Digital Chart of the World project, Photogrammetric Engineering and
Remote Sensing, 58, 1125-1128, 1992.

Dobson, J.E., Bright, E.A., Coleman, P.R., Durfee, R.C., and Worley, B.A., LandScan: A global
population database for estimating populations at risk, Photogrammetric Engineering
and Remote Sensing, 66(7), 849-857, 2000.

»Elvidge, C., Tuttle, B.T., Sutton, P.C., Baugh, K.E., Howard, A.T., Milesi, C., Bhaduri, B.L.,
and Nemani, R., Global distribution and density of constructed impervious surfaces,
Sensors, 7, 1962-1979, 2007.

Environmental Systems Research Institute, Inc. (ESRI), Digital Chart of the World (DCW),
Available online at www.maproom.psu.edu/dcw/.

European Commission (EC), Joint Research Centre (JRC), Global Vegetation Monitoring Unit
(GVM), Global Land Cover 2000. Available online at: http://www-gem.jrc.it/glc2000/
defaultglc2000.htm.

EC/JRC, A vegetation map of South America, by Eva, H.D., de Miranda, E.E., Di Bella, C.M.,
Gond, V., Huber, O., Sgrenzaroli, M., Jones, S., Coutinho, A., Dorado, A., Guimaraes,
M., Elvidge, C., Achard, F., Belward, A.S., Bartholomé, E., Baraldi, A., De Grandi,
G., Vogt, P., Fritz, S., and Hartley, A., 2002. Available online at http://www-gem.jrc.it/
¢1c2000/Products/southamer/ GLC2000_Downloads/final_report_v2.pdf.

EC/JRC, A land cover map of Africa, by Mayaux, P., Bartholomé, E., Massart, M., Van Cutsem,
C., Cabral, A., Nonguierma, A., Diallo, O., Pretorius, C., Thompson, M., Cherlet, M.,
Pekel, J.-F., Defourny, P., Vasconcelos, M., Di Gregorio, A., Fritz, S., De Grandi, G.,
Elvidge, C., Vogt, P., and Belward, A., EUR 20665 EN, et al., 2003a. Available online
at: http://www-gem.jrc.it/glc2000/ Products/africa/GLC2000_africa3.pdf.

EC/JRC, The GLC2000 land-cover classification, by Stibig, H.J., in: Bartholmé, E.,
ed., Global Land Cover 2000 “final results” workshop, Ispra, 24-26 March 2003,
Ispra, Italy, 2003b. Available online at: http://www-tem.jrc.it/PDF_publis/2003/
Bartholome_ GLCfinal_2003.pdf.

European Space Agency (ESA) GlobCover Project, Ionia GlobCover Portal. Available at:
http://ionial .esrin.esa.int/index.asp.

FAO, Mapping global urban and rural population distributions, by Salvatore, M., Pozzi, F.,
Ataman, E., Huddleston, B., and Bloise, M.; and Annex: Estimates of future global
population distribution to 2015, by Balk, D., Brickman, M., Anderson, B., Pozzi, F., and
Yetman, G., Environment and Natural Resources Working Paper No. 24, Rome, 2005.

FAO, Food Insecurity, Poverty and Environment Global GIS Database: DVD and Atlas for
the Year 2000, by Ataman, E., Salvatore, M., Huddleston, B., Zanetti, M., Bloise, M.,
Dooley, J.E., Ascione, M., van Velthuizen, H., Fisher, G., and Nachtergaele, F.O.,
Environment and Natural Resource Working Paper No. 26, Rome, 2006. The PMUR
database at high resolution (30arc-second) can be found in the DVD included in the
publication at the following path: Archive\30arc_seconds\PMUR. Also available at
(GeoNetwork): http://www.fao.org/geonetwork/srv/en/main.home under the title Rural
Population Distribution (persons per pixel), 2000 (High Resolution Layer) (FGGD).

FAO, Land Cover Classification System (LCCS), Conceptual Basis and Registration of
Classifiers: Proposed Draft Standard ISO, 2008.

FAO-Africover, The Africover initiative, the Eastern Africa module, other Africover modules,
and Africover goes global: the Global Land Cover Network program (GLVN), 2003a.
Available online at: http://www.africover.org/.

© 2009 by Taylor & Francis Group, LLC



The Africover and PMUR Datasets 189

FAO-Africover, The Africover methodology, 2003b. Available online at: http://www.africover.
org/africover_methodology.htm.

FAO and UNEP, Land Cover Classification System: Classification Concepts and User Manual,
Software Version 2, revised by Di Gregorio, A., based on the original software version
1 prepared by Di Gregorio, A., and Jansen, L.I.M., Environment and Natural Resources
Series No. 8, FAO, Rome, 2005.

»Goldewijk, K., Three centuries of global population growth: A spatial referenced population
(density) database for 1700-2000, Population and Environment, 26(5), 343-367, 2005.

» Imhoff, M.L., Lawrence, W.T., Stutzer, D.C., and Elvidge, C.D., A technique for using com-
posite DMSP/OLS “city lights” satellite data to map urban area, Remote Sensing of
Environment, 61(3), 361-370, 1997.

International Organization for Standardization (ISO), Geographic Information — Classification
Systems — Part 2: Land Cover Classification System (LCCS) — Proposed Draft
International Standard, ISO 19144-2 CD, 2008.

Lahmeyer, J., Populstat database: Growth of the population per country in a historical perspec-
tive, including their administrative divisions and principal towns, 2004. Available online
at: http://www.populstat.info/.

Latham, J., GTOS Nile Delta Land Cover Change Analysis, Pilot project report, June 2006.
Available online at: www.fao.org/gtos.

Netherlands Environmental Assessment Agency, HYDE Basic Driving Factors: Population.
Available online at: http://www.mnp.nl/en/themasites/hyde/basicdrivingfactors/popula-
tion/index.html.

Schneider, A., Friedl, M.A., Mclver, D.K., and Woodcock, C.E., Mapping urban areas by
fusing multiple sources of coarse resolution remotely-sensed data, Photogrammetric
Engineering & Remote Sensing, 69(12), 1377-1386, 2003.

Townshend, J.R., Latham, J., Arino, O., Balstad, R., Belward, A., Conant, R., Elvidge, C.,
Feuquay, J., El Hadani, D., Herold, M., Janetos, A., Justice, C.O., Liu Jiyuan, Loveland,
T., Nachtergaele, F., Ojima, D., Maiden, M., Palazzo, F., Schmullius, C., Sessa, R.,
Singh, A., Tschirley, J., and Yamamoto, H., Integrated Global Observations of the Land:
an IGOS-P Theme, IGOL Report No. 8, 2008.

United Nations, Principles and Recommendations for Population and Housing Censuses,
Revision 1, Series M, No. 67, Rev. 1 (United Nations publication, Sales No. E.98.
XVIL8), 1998.

United Nations, World Urbanization Prospects, the 2003 Revision, United Nations Publication
sales No. E.04.XIII.6, 2004.

United Nations Population Division, World Urbanization Prospects, the 2007 Revision
Population Database. Available online at: http://esa.un.unup.

United States National Aeronautics and Space Administration (NASA), Global Land Cover
Facility (Terra-MODIS). Available online at: www.landcover.org.

United States Geological Survey (USGS), Global Land Cover Characteristics (GLCC) dataset,
Available online at http://edcdaac.usgs.gov/glcc/glcc.asp.

USGS, Land Processes Distributed Active Archive Center: MODIS/Terra Land Cover Type
96-Day L3 Global 1 km ISN Grid. Available online at: http://edcdaac.usgs.gov/modis/
mod12ql.asp.

United States National Geophysical Data Center (NGDC), News of the Month Archive,
January 2007. Available online at: http://www.ngdc.noaa.gov/nndc/struts/results?eq_0
=2007/01&o0p_3=eq&v_3=N&t=102750&s=3&d=10,6,1 Im.

United States National Oceanic and Atmospheric Administration (NOAA), Database of
Nighttime Lights of the World. Available at http://dmsp.ngdc.noaa.gov/html/download_
world_ change_pair.html.

World Gazetteer, 2004, Most recent update available online at: http://www.world-gazetteer.
com/.

© 2009 by Taylor & Francis Group, LLC



9 The Urban Environmental
Monitoring/100
Cities Project

Legacy of the First Phase
and Next Steps

Elizabeth A. Wentz, William L. Stefanov, Maik
Netzband, Matthias S. Méller, and Anthony J. Brazel

CONTENTS

9.1 INErOAUCHION ...viiiiiiiiciiiirie e 191

9.2 Project History and Organizational Overview of UEM...........ccccoceeenieiene 193

9.3 Contributions to Urban Remote Sensing ..........ceccevevviererrienienienienieneeniene 195
9.3.1 Classification Approaches for Diverse Urban Areas..........ccceceeueeee 195
9.3.2 Better Understanding of Urban Ecosystems............ccceeevevievieniennenne 198

9.4  Conclusions and Future ObJECtIVES .........cocerieririeneriieniiiieneeiesieeieeieeiene 199

REfEIENCES ...t 200

9.1 INTRODUCTION

The Urban Environmental Monitoring (UEM) project, now known as the 100 Cities
Project (http://hundredcities.asu.edu/index.html), at Arizona State University (ASU)
is a baseline effort to collect and analyze remotely sensed data for 100 urban cen-
ters worldwide. Our overarching goal is to use remote sensing technology to better
understand the consequences of rapid urbanization through advanced biophysical
measurements, classification methods, and modeling, which can then be used to
inform public policy and planning.

Urbanization represents one of the most significant alterations that humankind
has made to the surface of the Earth. In the early 20th century, there were less than
20 cities in the world with populations exceeding 1 million; today, there are more
than 400. The consequences of urbanization include the transformation of land sur-
faces from undisturbed natural environments to land that supports different forms
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of human activity, including agriculture, residential, commercial, industrial, and
infrastructure such as roads and other types of transportation. Each of these land
transformations has impacted, to varying degrees, the local climatology, hydrology,
geology, and biota that predate human settlement. It is essential that we document,
to the best of our ability, the nature of land transformations and the consequences to
the existing environment.

The focus in the UEM project since its inception has been on rapid urbaniza-
tion. Rapid urbanization is occurring in hundreds of cities worldwide as popula-
tion increases and people migrate from rural communities to urban centers in
search of employment and a better quality of life. The unintended consequences
of rapid urbanization have the potential to cause serious harm to the environment,
to human life, and to the resulting built environment because rapid development
constrains and rushes decision making. Such rapid decision making can result
in poor planning, ineffective policies, and decisions that harm the environment
and the quality of human life. Slower, more thought-out, decision making could
result in more favorable outcomes. The harm to the environment includes poor
air quality, soil erosion, polluted rivers and aquifers, and loss of wildlife habitat.
Human life is then threatened because of increased potential for disease spread-
ing, human conflict, environmental hazards, and diminished quality of life. The
built environment is potentially threatened when cities are built in areas that can
be impacted by events such as hurricanes, tsunamis, Earthquakes, fires, and land-
slides. Our goals include assessing the threat of such events on cities and the
people living there.

Remote sensing is now a proven technology to support research to better under-
stand rapid urbanization. Using remote sensing to document and analyze rapid
urbanization can facilitate planning and new policies to better protect the natural
environment, human life, and built structures. A large majority of urban remote
sensing studies involve measuring the extent of urbanization and monitoring the
rate of urban growth (Howarth and Boasson, 1983; Imhoff et al., 1997; Ridd and
Liu, 1998; Zhang and Foody, 1998; Sutton, 2003; Weber and Puissant, 2003).
Along with documenting the extent of urbanization, other researchers have used
remotely sensed imagery to quantify the physical characteristics of growth such
as urban shape, density, and morphology (Herold et al., 2003; Rashed et al., 2003;
Small, 2003; Stefanov and Netzband, 2005, 2009; Seto et al., 2007); to classify
land use/land cover (LU/LC) in urban areas (Howarth and Boasson, 1983; Martin
et al., 1988; Stefanov et al., 2001b; Schneider et al., 2003; Schopfer and Moeller,
2006); to infer population density (Welch, 1980; Li and Weng, 2005; Pozzi and
Small, 2005); to assess the ramifications of urbanization such as air quality, urban
heat islands (UHIs), hydrology, energy use, local fauna (Roth et al., 1989; Lo
et al., 1997; Arthur-Hartranft et al., 2003;Voogt and Oke, 2003; Weng, 2003; Gillies
et al., 2003; Hammer et al., 2003; Hawkins et al., 2004; Stefanov et al., 2004; Kato
and Yamaguchi, 2005; Nichol, 2005; Harlan et al., 2006; Jenerette et al., 2007);
and to identify specific urban features such as buildings, industrial complexes, and
automobiles (Dell’Acqua and Gamba, 2001; Bian, 2003; Song and Civco, 2004;
Dell’Acqua et al., 2006; Gamba et al., 2006). These studies demonstrate the magni-
tude and diverse possibilities of the technology.
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9.2 PROJECT HISTORY AND ORGANIZATIONAL
OVERVIEW OF UEM

The UEM project (http://hundredcities.asu.edu/index.html) was initially conceived
in the early 1990s as a focus of data collection and analysis for Japan’s Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor, planned
for launch aboard the National Aeronautics Space Administration (NASA) Terra sat-
ellite in mid-1999 (Abrams, 2000). The original goal was to collect daytime and
nighttime ASTER data over 100 urban centers twice per year to capture seasonal
variations and to provide baseline observations of the physical state of each city.
The urban centers were initially selected based on population growth and potential
vulnerability to natural hazards. Primary characterization of each urban center
was to be accomplished by land cover classification using a modified expert system
approach developed for Phoenix, AZ (Stefanov et al., 2001b, 2007) — the “home
city” of the UEM project. This global baseline data set would then be used for
comparison and change detection during the duration of the Terra mission (nomi-
nally, 6 years; Ramsey et al., 1999; Stefanov et al., 2001a; Ramsey, 2003). Led by
Dr. Philip Christensen, the 100 cities were submitted as part of the original ASTER
Science Team Acquisition Request, and supported by NASA. An up-to-date list of
the Science Team is listed on the project website (http://hundredcities.asu.edu/index.
html). Although the launch of Terra was achieved in 1999, usable ASTER data for
urban centers only became available in 2000.

The ASTER is a request-driven instrument, and the UEM is only one among
several data acquisition requests. Unforeseen difficulties with the ASTER data
acquisition scheduling algorithm — urban targets had low priority due to their rela-
tively small size — resulted in incomplete coverage and sampling of the original
100 cities. As such, the original goal of establishing baseline data for all 100 cit-
ies became impractical. Despite the scheduling difficulties, a large number of high-
quality scenes were acquired, with initial comparisons focusing on urban texture and
spatial metric analysis to explore observable groupings or types of cities based on
remotely sensed measurements of urban form.

A recompetition of the ASTER Science Team was required by NASA in 2003,
and this was used by the UEM team as an opportunity to focus the project goals
and objectives in response to the data collection difficulties described above. Perhaps
the single greatest change to the project was focus on a subset of intensive study
cities, rather than the broad view on the “100 city”” approach. This was done to bal-
ance science goals with the practical realities of data collection and analysis, and to
establish a firmer theoretical framework for the project. To that end, a suite of cities
from within the 100-city set were selected on the basis of exposure to natural haz-
ards (e.g., Earthquakes, volcanoes, and hurricanes), regional geography, climate, and
population. Potential for urban growth and current urban population (based on United
Nations data circa 2000) were also factors (Figure 9.1), and the reframed project now
reflects a significant component of urban ecological research — particularly in terms
of urban climate (discussed below). Eight cities were ultimately selected for intensive
study — Chiang Mai, Thailand; Berlin, Germany; Canberra, Australia; Delhi, India;
Lima, Peru; Manila, Philippines; Mexico City, Mexico; and Phoenix, Arizona, USA.
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FIGURE 9.1 Fragmentation analysis using patch diversity metric for 55 urban centers. Patch
diversity index results are in raster format; “6+7” indicates the two highest-value classes of
the index used for percentage calculation. ASTER data acquisition time is indicated for each
city. A: Africa; B: Asia; C: Australia; D: Europe; E: Middle East; F: North America; G: South
America. (From Netzband and Stefanov (2003). Used with permission.)

Of the eight intensive study cities, the majority of work to date has been focused
on Phoenix, AZ, USA; Delhi, India (Wentz et al., 2008); Berlin, Germany (Hostert,
2007); and Chiang Mai, Thailand (Lebel et al., 2007). The Phoenix metropolitan area
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was used as a test bed for more in-depth analysis of the spatial structure of the city,
and the relation of that structure to biophysical parameters of ecological interest mea-
sured by the Moderate Resolution Imaging Spectroradiometer (MODIS) (Stefanov
and Netzband, 2005, 2009). This work also carried on the multisensor philosophy
of the UEM project, as the MODIS sensors onboard the NASA Terra and Aqua plat-
forms collect a high temporal frequency multispectral data set that is of great poten-
tial use for monitoring of urban biophysical parameters (Schneider et al., 2003).

9.3 CONTRIBUTIONS TO URBAN REMOTE SENSING

Scientists associated with the UEM (the names are listed at http://hundredcities.asu.
edu/index.html) project have made several contributions to the field of urban remote
sensing. From a technical and methodological perspective, we have developed and
evaluated new methods for classifying LU/LC and we have utilized spatial metrics
on our data to better understand urban land use patterns. Our second contribution to
urban remote sensing is through applying our datasets to better understand the con-
sequences of urbanization, including habitat structure and productivity and the UHI.
In this section, we describe in more detail the findings of these investigations.

9.3.1 CLASSIFICATION APPROACHES FOR DIVERSE URBAN AREAS

With 100 or more cities to classify, one important objective was to establish a meth-
odology for LU/LC classification that was portable to multiple urban centers. The
expert system approach, established for the baseline urban center in Phoenix, USA,
was established as the model system. The expert system approach was selected over
other methods because of its high level of accuracy as well as its ability to distin-
guish multiple urban classes. We also investigated the portability of using an object-
based approach to land use classification.

The initial experiment to test the portability of the Phoenix expert system is reported
by Wentz et al. (2008). They applied the Phoenix expert system approach to Delhi,
India, with mixed success. Aspects of the transfer that were easily adapted were the
selection of ancillary data needed by the expert system. Land use, derived from aerial
photography (Phoenix) and paper maps (Delhi), was essential to establish the custom-
ized rules in the expert system. Some of the ancillary data (e.g., water rights) were
specific to the Phoenix area and therefore not used in the Delhi study. The most chal-
lenging aspect of transferring the expert system rules from one area to another was to
identify a similar set of land use classes. The two cities have different urban structures
with strikingly different dominant LU/LC types. The different urban structure resulted
in a very different set of classes and therefore a unique set of expert system rules.

Using a modified and more portable form of the expert system classification
developed for Phoenix by Stefanov et al. (2001b), Stefanov and Netzband (2005)
compared MODIS Normalized Difference Vegetation Index (NDVI) data at spatial
scales of 250, 500, and 1000 m/pixel to a suite of gridded spatial metrics (class area,
mean patch size, edge density, and interspersion/juxtaposition index) derived from
land cover classification of ASTER data. In a related study, Stefanov and Netzband
(2009) used the same land cover classification of ASTER data to investigate potential
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correlations between 1000 m/pixel MODIS albedo, fraction of photosynthetically
active radiation, leaf area index, and land surface temperature with gridded spatial
metric patterns. The results of both studies suggest that clear control of biophysical
variables by urban spatial structure is not visible in MODIS; however, some control
of vegetation-related parameters by spatial structure is indicated.

Most urban areas are composed of similar features such as streets, build-
ings, parks, and gardens. These represent “objects” in the urban environment and
therefore make the object-based classification approach an obvious alternative to
the classical pixel-based approach. With the classical pixel-based multivariate sta-
tistical approach, these urban features cannot be extracted as entities; instead, each
object is represented as a clump of aggregated pixels. Aggregated pixels classified
as “building” may be directly located in the center of “street,” which is an incorrect
classification. In addition to the spectral information, the object-based image analy-
sis (OBIA) also considers shape, neighborhood relations, and context information
for a classification, and consequently the OBIA approach often leads to results with
increased classification accuracy for urban areas.

OBIA in a computer environment follows a three-step principle: segmenta-
tion, class rule set development and establishing of a cognition network (the netted
rule sets), and finally the iterative classification process (Blaschke and Hay, 2001;
Blaschke et al., 2004). In a first step, a multiresolution segmentation is calculated for
the area of interest. The resulting segments reflect image areas with homogeneous
gray values. Objects are represented as segments; however, urban objects have dif-
ferent sizes — consequently, image segments have to be calculated on several hier-
archical levels varying in size and shape. On a low level, for example, small objects
such as buildings, garages, etc., can be represented in segments, depending on the
spatial image resolution. On a higher level, streets can be segmented with different
segmentation parameters, because streets differ significantly in shape and size from
buildings. All segment levels are linked to each other in a parent-child relation —
parents know their children and vice versa. Due to the hierarchical structure and the
linkage of all segmentation levels, we can distinguish between streets and buildings
with a strict classification rule: “building may never be part of street.”

The rule set definition is part of the second step in the OBIA classification process,
where objects have to be described with their individual ontologies. Those may contain
multispectral properties, surface texture, neighborhood relations (both horizontal and
vertical), and object-specific shape parameters. The rule sets may be linked and con-
nected, and they will finally build a cognition network. Based on the cognition network,
a classification run is performed and the result is checked for its semantic accuracy.
However, the first classification result will not be satisfactory for some classes and the
rule sets for those have to be fine-tuned with their parameters in an iterative self-improv-
ing cycle until the classification output has reached an acceptable accuracy level.

Anadvantage of the OBIA classification approach is the transferability of segmentation
parameters and classification rule sets with the entire cognition network from one area of
interest to another area. Those areas should consist of almost the same objects to classify,
and the location should be in a similar natural environment. It is also advantageous to
use the same type of image data. As part of the US National Science Foundation-funded
Agricultural Landscapes in Transition project (http:/sustainability.asu.edu/agtrans/), in
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tight cooperation with the UEM project, a transferability test for segmentation param-
eters and rule sets was performed for Phoenix, AZ, and Las Vegas, NV (Schopfer and
Moeller, 2006). Segmentation, classification rule sets, and cognition network were ini-
tially developed for the Phoenix area and later transferred and adapted to Las Vegas.
ASTER multispectral (bands 1-3) 15 m/pixel resolution image data were used for both
classifications. The image datasets were acquired on April 1, 2005 (Phoenix), and May
1, 2005 (Las Vegas), to guarantee a similar vegetation phenology.

The Phoenix image data were segmented on three levels, and a cognition network
with rule sets based on the class schema of the 100 Cities Project expert classification
system (Figure 9.2) was developed. Using the eCognition software environment, this
classification resulted in overall accuracies of: 84.24% (K" = 0.8268) for Phoenix and
83.33% (K™ = 0.8148) for Las Vegas, both verified with high-resolution images.

The valuable outcome of this method is the “blind” transfer of classification rules to
areas with a similar natural environment. The next step would be the development of
robust rule sets and reliable cognition networks for nonarid environments and the appli-
cation to urban areas located in these regions. Once these standardized algorithms have
been established and positively tested, this move would significantly reduce the classifi-
cation efforts and costs. These schemas can be developed first for one sensor image prod-
uct, for example, ASTER, and can be extended (with more detailed classes, for example)
to fit to additional remote sensing sensor products with finer spatial resolution.

Spatial texture analysis was used to investigate and classify the spatial
structure of 13 urban centers as a component of an expert classification system
by Stefanov et al. (2001a). The results of this study suggested that urban cen-
ters could be characterized as centralized (i.e., Baltimore, MD), decentralized
(i.e., Phoenix, AZ), and intermediate (i.e., Riyadh, Saudi Arabia), using ASTER
15 m/pixel visible to near-infrared data. A more sophisticated analysis of urban
form and environmental fragmentation using spatial metrics was presented by
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FIGURE 9.2 Geographic distribution of initially selected “intensive study” cities (circled)
on the basis of urban growth and population trends, circa 2000.
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Netzband and Stefanov (2003). This study used a simplified expert system to clas-
sify land cover into eight generalized classes (Water, Bare Soil/Low Vegetation,
Moderate Vegetation, High Vegetation, Low Density Urban, Moderate Density
Urban, and High Density Urban) for comparison of urban centers. The land cover
classifications were then used for gridded analysis of a suite of spatial metrics
for a subset of 10 cities. Metrics used were class area, patch density, edge den-
sity, area weighted mean shape index, and interspersion/juxtaposition index; see
McGarigal and Marks (1994) for definition of the different metrics. In addition,
55 cities were selected for regional fragmentation analysis using a patch diversity
metric (Forman, 1995). Although the results of both the regional fragmentation
analysis and the metric suite analysis indicated interesting trends many variables
such as scale dependence (Wu et al., 2000), classification scheme, and seasonality
required further sensitivity analysis.

9.3.2 BEetTER UNDERSTANDING OF URBAN ECOSYSTEMS

There are many unanswered questions on the consequences of rapid urbanization on
urban ecosystems: How have the biodiversity and the population density of plants
and animals been affected? Do plants and animals indigenous to the area main-
tain dominance? What is the spatial distribution of plants and animals? How have
the home range and the movement patterns of animals changed? LU/LC classifica-
tions can be incorporated into local and regional ecosystem models to assess the
effects of urban change on carbon cycling and source/sink relationships. Empirical
studies have demonstrated that the variations of landscape elements (e.g., natural
vegetation remnant patches, parks, golf courses, agricultural fields, urban blocks)
may significantly influence ecosystem processes, such as net primary productivity,
energy flux, watershed discharge characteristics, and nutrient cycling (Lowrance
et al., 1985; McDonnell and Pickett, 1990; Risser, 1990; Knapp et al., 1993;
McDonnell et al., 1997). To detect the changes in landscape pattern and the ecologi-
cal consequences (e.g., C source-sink dynamics) at the regional scale or above, it is
imperative to integrate remote sensing, field work, and ecosystem modeling. There
are several contributions in these areas resulting from the UEM project.

Scientists associated with the UEM project have participated in research associ-
ated with urban climatology, including mesoscale atmospheric modeling and mea-
surement and analysis of the UHI. One component of this work has been to integrate
classified remotely sensed imagery, such as LU/LC, into mesoscale meteorological
models, such as the MMS5 (Grossman-Clarke et al., 2005). Previous implementations
of the MMS5 used only a single “urban” class for atmospheric forecasting purposes.
The more detailed LU/LC classification system, which contained 12 urban classes,
improved the modeling of the boundary layer and improved the ability of the MMS5 to
simulate temperature ranges in the Phoenix area (Grossman-Clarke et al., 2005). In a
second study in urban climatology, researchers have measured the extent and impact
of UHI on the local climatology and on the residents living there. Urban remote sens-
ing is proving to be an effective tool to measure the spatial extent and intensity of the
effect of urban development on local temperatures (Voogt and Oke, 2003; Stefanov
et al., 2004; Hartz et al., 2006a, 2006b; Jenerette et al., 2007; Stefanov and Brazel,
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2007). This is especially true in UHI analysis with acquisition of nighttime ASTER
imagery — taken at times of the maximum heat island development in the diurnal cycle
(Hartz et al., 2006a). This increased temperature in cities is contributing to heat stress
in the residents living there. To investigate this effect in Phoenix, Harlan et al. (2006)
made use of a human comfort simulation model (after Brown and Gillispie, 1995;
Heisler and Wang, 2002; and Hartz et al., 2006b) to estimate a temperature comfort
measure based on local climate conditions, and found that lower-income neighbor-
hoods were more likely to have a higher heat stress indicator, suggesting that policies
associated with UHI mitigation should target these vulnerable neighborhoods.

Satellite remote sensing data provide universal coverage, but typically provide
little biotic resolution with respect to the scale of individual flora and fauna. This
means that remote sensing information can only be linked to meaningful biodiversity
indicators through spatial parameters such as land use and land cover and the related
habitat structure. Perhaps, the highest contribution of remote sensing methodology
to urban ecological remote sensing is in monitoring the highly heterogeneous and
fragmented land use and land cover as well as change in both, including information
on biophysical attributes, vegetation structure, and habitat fragmentation, which are
essential determinants of species distributions. Remotely sensed data are of par-
ticular use for monitoring biodiversity in the urban mosaic of artificial and natural
surfaces due to the relatively high temporal resolution (compared to ground survey
campaigns) for change detection of ongoing and fast land use changes.

To focus analysis on the monitoring of the actual LU/LC and its current and
potential changes, we will continue to generate products such as vegetation indi-
ces (NDVI, SAVI, EVI) and day/night surface kinetic temperature maps using the
ASTER database for selected city sites. These data, combined with multispectral
and object-oriented LU/LC classifications, will be used for analysis of landscape
structure change applying spatial metrics. Performing cross-site temporal compari-
sons of change-related landscape structure and associated biophysical responses
will be undertaken to improve our understanding of how urban systems respond to
such changes. This line of research will also provide insight into vulnerability and
resilience of various ecosystem types to human impact, which will help address the
question of consequences of change for human civilization from the perspective of
biodiversity and ecosystem services.

9.4 CONCLUSIONS AND FUTURE OBJECTIVES

In recent years, urban remote sensing has proven to be a useful tool for cross-scale
urban planning and urban ecological research as described above. The UEM/100
Cities Project, (http://hundredcities.asu.edu/index.html) at ASU has been successful
as a baseline effort to collect and analyze remotely sensed data for urban centers
worldwide. Although the focus of the project has only touched on all 100 cities,
our aim is to grow to meet that goal. The 100 Cities Project continues to grow our
team of researchers and practitioners at ASU and at other institutions around the
world to share datasets and participate in collaborative, interdisciplinary research.
We seek to create meaningful partnerships with cities internationally. As we build
our partnerships, we can then develop a model of how to approach cities and address
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their problems with urban remote sensing. Our self-conception is that the 100 Cities
Project shall serve as an open platform designed to bring policymakers and research-
ers together to apply urban remote sensing to the problems of urbanization, the
environment, and sustainability. We intend to operationalize this ambitious goal by
making urban remote sensing products and processes useful and available to cit-
ies for planning and policy making through outreach and partnerships. Currently,
datasets are accessible by contacting our project director. Furthermore, our academic
experience allows us to utilize mapping and modeling results of our remote sensing
research to advance the understanding of urban development trajectories and urban
“futures.” Finally, we aim to develop an international network of urban data provid-
ers, researchers, and end users to rapidly disseminate and archive data, analytical
approaches, and results.

A major question that continues to be posed and refined is how to grow the 100
Cities Project into an integrated interdisciplinary physical and social science tool
with a focus on urban sustainability. One can observe that social science studies
are attracted to remote sensing data due to the objective measurement of biophysi-
cal characteristics on a local (e.g., urban studies), regional (forest cover changes,
urban to peri-urban demographic development), or even on a global scale. However,
there is no correspondence in nature or landscape units to grids or even small-
scale administrative units. Hence, studies concentrating on the challenge of world
urbanization still claim an unmet need for linked spatial biophysical and sociode-
mographic information. Rindfuss and Stern (1998) discuss the gap between social
science and remote sensing research as well as the potential benefits in bridging
that gap.

There are examples on how to bridge this gap. A workshop at the International
Human Dimensions Programme (IHDP) Open Meeting 2008 jointly organized
by the 100 Cities Project and the IHDP core project on Urbanization and Global
Environmental Change (http://www.ugec.org/tiki-index.php) seeks to understand
how urban remote sensing can best be utilized by both researchers and practitioners
in urban models, planning, and policy formulation. Two major questions posed in
the workshop were: “What is the potential of urban remote sensing for an integrated
interdisciplinary physical and social science with a focus on urban sustainability?”
and “How can urban remote sensing fill the gaps in scientific information best for
the needs of such an integrated discipline?” More efforts such as this will allow for
continued growth of 100 Cities partnerships.
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10.1 INTRODUCTION

Over the past 50 years, the world has faced dramatic growth of its urban
population. The percentage of urban inhabitants exceeded the rural population for
the first time in 2007. Furthermore, the trends imply that almost all the expected
world population growth until 2030 will be absorbed by urban areas (United Nations,
2003). From 1975 up to the present, the number of so-called megacities increased
from 4 to 22, mostly in less developed regions (Miinchner Riick, 2005). In general,
the term “megacity” describes the world’s largest agglomerations. Quantitatively,
megacities are defined as megalopolises with more than 10 million inhabitants
(United Nations, 2003; Mertins, 1992). Qualitatively, megacities are characterized
by high and dense population concentration, and a high density of industries, and
social, technical, and transportation infrastructure. They show extreme, uncon-
trolled urban sprawl, high traffic pressure, ecologic overload, concentration of assets
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and power, high spatiotemporal dynamics, and the coexistence of socioeconomic
disparities (Kotter, 2004; Kraas and Coy, 2003). In these megacities, in particular,
the enormous dimension of quantitative growth, the high concentration of people,
infrastructure, and economic power, but also the synchronism, complexity, and
interaction of diverse urban processes, imply nonassessable risks. Thus, megacities
can be both victims and producers of risks.

Table 10.1 displays the temporal population development of the 10 largest mega-
cities since 1900. The largest megacity today has about 5.5 times the population of
the largest megacity in 1900, and there is also an unbroken trend of urban sprawl
visible. A clear shift in the top 10 megacities from developed countries, which more
or less remain static, to developing countries, which show explosive urban growth,
is observable.

Such explosive growth causes uncontrolled and unplanned urbanization. This
makes megacities particularly prone to supply crises, social disorganization, and
political conflicts. In addition to the structural exposure of such megacities, the loca-
tion of many cities in areas prone to natural hazards adds to the risks.

The UN (2004) determined that the risk to a particular system has two factors.
One factor is the “hazard” itself, which is a potentially damaging physical event, phe-
nomenon, or human activity that is characterized by its location, intensity, frequency,
and probability. The second factor is “vulnerability,” which denotes the relationship
between the severity of hazard and the degree of damage caused. Thus, risk results
from a future interplay of a hazard and the various components defining vulnerabil-
ity. This general conceptualization as a theoretical framework for risk management
is used to approach the difficult and complex task of progressing from identifying
risks to decision making. The two components defining risk — vulnerability and
hazard — are used as an outline in the study to identify the potential contributions
of multisensoral remote sensing data to this framework before, during, and after a
disastrous event.

In recent years, satellite systems and image analysis techniques have devel-
oped to an extent where civil and commercial Earth observation (EO) instruments
can contribute significantly in supporting the management of major technical
and natural disasters as well as humanitarian crisis situations (Voigt et al., 2007;
Taubenbock et al., 2008a). Even before an expected disastrous event, explosive
urban sprawl and inner-urban dynamic transformations in megacities challenge
the need for up-to-date and area-wide information on the urban environment.
Remotely sensed imagery from satellites has become an important tool providing
information on the current urban situation useful for assessing the vulnerability of
urban areas and grasping damage distribution due to natural disasters (Yamazaki,
2001). The platform and sensors used for remote sensing must be selected by tak-
ing into account the area to be covered, the urgency, desired image resolution,
weather, and time conditions. The most important data sources for monitoring
urban areas are medium to very high resolution optical systems and synthetic aper-
ture radar (SAR) systems.

The heterogeneity and small-scale structure of urban morphology requires geo-
metric resolution that enables differentiation of objects necessary for analyzing
spatial patterns of vulnerability and risk. Very high optical resolution satellite data
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from Ikonos, Quickbird, or SPOT feature a geometric resolution ranging from 60 cm
to 2.5 m, which is feasible for urban environments. In terms of temporal analysis,
optical sensors such as Landsat (since 1972), SPOT (1986), and IRS (1988) enable
the monitoring and detection of changes with reduced spatial resolution. In addi-
tion to optical systems, SAR antennas operate almost independently of meteorologi-
cal conditions and solar illumination. There are, at present, several SAR sensors in
space offering a broad and global observation of the planet (e.g., ERS-2, RadarSat,
Envisat, TerraSAR-X, and the space shuttle) (Jordan, 1997) in different frequen-
cies, polarizations, and geometric resolutions. Even aerial acquisitions (Gamba,
Houshmand, and Saccani, 2000) are possible due to the full-time imaging poten-
tial of radar. Interferometric SAR has been applied widely to derive digital eleva-
tion models (DEMs) (Rabus et al., 2003) and to study ground displacements (Rosen
etal., 2000). In particular, the Shuttle Radar Topography Mission (SRTM) of the year
2000 (Farr et al., 2007, Marschalk et al., 2004) supports urban analysis with area-
wide DEMs. Furthermore, new radar satellites such as TerraSAR-X, CosmoSkyMed,
and Advanced Land Observing Satellite (ALOS) enable the extraction and analysis
of urban structures based on geometric resolutions up to 1 m (Roth et al., 2005; Esch
et al., 2005; Esch, 2006).

Utilizing multisource remotely sensed data, geospatial information, maps,
and thematic analysis can be produced in various scales to support risk and
disaster management before, during, and after an event. This study addresses the
following specific questions regarding risk management using remotely sensed
data in megacities:

e How can risk management be conceptualized?

*  What are the capabilities and limitations of remote sensing to contribute to
risk assessment and support risk management?

* What are future perspectives regarding megacities and remote sensing?

10.2 RISKS IN MEGACITIES
10.2.1 HAzARDS

Hazards can be either natural (e.g., such as Earthquakes, volcanic eruptions, land-
slides, storms, floods, droughts, heat waves, snowfall, frost, avalanches, and global
sea level rise) or man-made (e.g., water and soil pollution, accidents, fire, industrial
explosions, sinking land levels, diseases and epidemics, socioeconomic crises, civil
riots and terror attacks, nuclear accidents, war, and germ or nuclear warfare) (Kraas
and Coy, 2003). (Natural) hazards are defined as the probability of a disastrous
event occurring within a certain period at a certain place. They are a phenom-
enon of a certain intensity having a destructive impact on the affected environment
(UNESCO, 1973).

Many megacities are located in areas exposed to natural disasters. Examples
are the Earthquake-prone megacities of Istanbul, Los Angeles, Mexico City, and
Tokyo; landslide hazards that threaten Caracas, Hong Kong, Rio de Janeiro, and
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Manila; floods in Mumbai, Dhaka, Kolkata, Seoul, and Bangkok; tropical storms
over Shanghai and Taipeh; tsunamis inundating Jakarta, Mumbai, and Tokyo; and
volcanic eruptions near Mexico City (Mitchell, 1999). Sole consideration of the haz-
ard only reveals an incomplete view of risks, with Birkmann (2006) stressing the
need for a paradigm shift from the quantification and analysis of the hazard to the
identification, assessment, and ranking of vulnerabilities.

10.2.2  VULNERABILITY, Risk, AND THEIR MANAGEMENT

Risk is imaginary, and thus implies uncertainty. Risk management deals with
prognoses about future events. To be suitably prepared, access to substantial,
up-to-date, and area-wide information is mandatory. Risk is the interaction of a
hazard and the vulnerability of a system. Vulnerability is a complex interaction
of various aspects concerning a specific hazard. The UN (2004) defines vulner-
ability as the condition determined by physical, economic, social, environmental
factors, or processes that increases the susceptibility of a community to the impact
of hazards (Figure 10.1). Thus, indicators contributing to the vulnerability concept
describe the exposure and the susceptibility as stressors of the system, with the
coping capacity as the potential of the system to decrease the impact of the hazard
(White et al., 2005).

The general outline of the risk framework is defined using abstract terms. To
make them measurable, they are resolved down to quantifiable, clearly comparable,
and utilizable indicators to support decision making. As an example, the physical
sphere represents one aspect that can be specified in measurable indicators, such
as number of buildings, built-up density, structural vulnerability, or accessibility,
among many others. Their combination simulates the holistic idea of the risk frame-
work. Thus, the indicators can either stress the system (exposure, susceptibility) or
counter vulnerability (coping capacity).

The risk framework specifies the various hazards and types of vulnerability, but
does not address issues of temporal progress. The timeline of risk (Wisner, 2004;
DKKY, 2002) supports decision making in all phases. In the predisaster phase, sub-
stantial, up-to-date, and area-wide information is the foundation for identifying risks
and their spatial pattern. The first step is assessing the weaknesses of a system (here,
urban) in order to systematically implement preventive measures. In the disaster
phase, required information supports the decision maker in assessing the situation by
estimating the location, dimension, and spatial pattern of the impact. In the postdi-
saster phase, knowledge about the impact makes it possible to organize the reaction
and rehabilitation processes. Figure 10.1 shows the theoretical conceptualization of
the risk framework with respect to the timeline. The resulting indicators frame the
basis to support decision making with substantial, objectively measurable, up-to-
date, and area-wide information.

In the following, the risk framework and its timeline present the guideline to
identify the capabilities of remote sensing in urban areas to provide decision makers
with an information basis.
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FIGURE 10.1 Risk framework in dependency of timeline of potential disasters.

10.3 CONTRIBUTIONS OF REMOTE SENSING TO
RISK MANAGEMENT IN MEGACITIES

Problems associated with hazard identification, risk assessment, and developing
mitigation solutions are inherently spatial in nature. Remote sensing provides
various data sources appropriate for analyzing different aspects (indicators) of
the holistic risk framework spatially with respect to its timeline. Well-founded
decisions are a prerequisite for the formulation of successful mitigation, response,
preparedness, and recovery strategies. To a large extent, however, successful strat-
egies depend on the availability of accurate information presented in an appro-
priate and timely manner. Information is also important because it increases the
transparency and accountability of the decision-making process and can therefore
contribute to good governance (Montoya, 2003). In the following, possible con-
tributions of remote sensing in the predisaster phase for assessing vulnerability
and risk, in the disaster phase to support coordination, and eventually in the post-
disaster phase to support rehabilitation measures are shown for a selection of the
world’s megacities.

10.3.1 PREDISASTER PHASE

The identification of risks is essential in the predisaster phase to enable sustainable
development and preventive measures finally leading to preparedness. As presented
in Figure 10.1, risk is the interaction between two components: the hazard and the
vulnerability of a system. Remote sensing contributes spatial information on both.
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10.3.1.1 Hazards

Radar technology, in particular, is well suited for monitoring and assessing the
hazard side of the risk framework. Differential SAR (DiffSAR) interferometry
allows, in principle, the measurement of very small movements of the ground and
can cover large areas. Using the permanent scatterers (PS) technique (Ferreti et al.,
2001), several procedures have been developed in recent years; these include the
Small BAseline Subset (SBAS) technique (Berardino et al., 2002, 2004), Coherent
Point Target Analysis (Mora et al., 2003), Interferometric Point Target Analysis
(Wegmiiller et al., 2005), and the Spatio-Temporal Unwrapping Network (Kampes
and Adam, 2005). Examples for applications are monitoring the deformation of vol-
canoes (Lu et al., 1997; Berardino et al., 2002), land subsidence (Crosetto et al.,
2003; Hoffmann et al., 2001), crustal movements (Colesanti et al., 2003; Tobita
et al., 2006), and the use of DiffSAR interferometry to monitor and model large slope
instability (Berardino et al., 2003; Xia et al., 2004). By default, coherent scatterers
mainly appear in urban areas, making this technique an important tool for assessing
natural and man-made hazards in an urban environment.

Interferograms can also be used to produce DEMs (Rabus et al., 2003). The height
information in combination with the orientation of the slopes using a DEM based on
SRTM data can be used to support the modeling of affected areas in the case of a
tsunami wave hitting an urban coastline.

By using a DEM based on SRTM data, various contributions to assess the spatial
distribution of potentially endangered areas are possible. The location of urbanized
areas has a great influence on their vulnerability and exposure. Orographic informa-
tion or distance to expected sources of natural hazards allows a first assessment of
a spatial pattern of vulnerability. The utilization of a DEM enables the integration
of orographic surface information when assessing high risk zones such as flood- or
tsunami-prone areas based on height information, or landslide prone slopes derived
from the terrain’s steepness.

Figure 10.2 displays an SRTM-based DEM of the megacity Rio de Janeiro, Brazil.
In the example, the hilly coastal urban landscape prone to landslides is visualized.
The result projects the spatial distribution of the steepness of slopes, which serves as
an indicator to identify areas at high risk for landslides. Areas classified as having
steep slopes overlapping with Landsat imagery showing urban sprawl help users to
identify areas with steep, landslide-prone slopes, indicate high risks, and thus give a
first spatial pattern of the hazard side of risk.

10.3.1.2  Vulnerability
10.3.1.2.1  Physical Sphere

As mentioned above, one major influencing factor is the growing urbanization
around megacities. As cities expand, spontaneous and informal settlements tend to
alter typical environmental peri-urban areas, such as agricultural and natural spaces.
Correct analysis of these changes and settlement characteristics is needed to estab-
lish planning procedures and, in particular, to assess and monitor disaster preven-
tion (Lavalle et al., 2001). Medium-resolution satellite data such as Landsat cover
large areas of megacities and, because they are available from 1972 onward, enable
consistent monitoring of urban sprawl dimensions and directions. With its field of
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FIGURE 10.2 (See color insert following page 324.) Overlapping of the DEM and Landsat
data indicating areas of high landslide risk based on steepness of slopes in the megacity Rio
de Janeiro, Brazil.

view of 185 km, this satellite is able to survey the large metropolitan areas of the
study sites. Measurements of both areal coverage and spatial distribution are needed
to adequately describe the morphology of an urban area (Schweitzer and Steinbrink,
1998). The chosen level of description with Landsat data features geometric reso-
lutions from 79 m (Multispectral Scanner) to 15 m (Enhanced Thematic Mapper)
not flooded with microscopic detail, but incorporating specific features of the urban
system. On the other hand, requirements for the differentiation of classes are limited
to the classification of built-up versus non-built-up areas. Also, the accuracy of clas-
sification is limited because of the coarse geometric resolution and therefore many
“mixed-pixels” with information on various thematic classes must be accommo-
dated. This limited differentiation and accuracy nevertheless enables monitoring and
detection of the correct dimension of spatial and temporal changes, urban sprawl,
and the spatial direction of urban development.

Multidate satellite data are used for analyzing spatial urbanization. A hierarchical
object-oriented classification algorithm is used to derive a land cover classification.
The segment-based algorithm utilizes spectral signatures of the scene, and arithme-
tic operations to derive indices such as Normalized Difference Vegetation Index and
Soil Adjusted Vegetation Index to enable differentiation of four classes — sealed
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areas, vegetation, water, and bare soil. In addition, the use of a principal component
analysis and shape information from the segmentation approach supports the fuzzy-
based classification algorithm. The accuracy has been checked by a 200-sample
point visual comparison for each class. With respect to the limitation of the geo-
metric capability of Landsat data, the overall accuracy was 92%. Postclassification
comparison was found to be the most accurate procedure and had the advantage of
indicating the nature of the changes (Mas, 1999). A comparative analysis of indepen-
dently produced spectral classifications for times ¢, and ¢, (Singh, 1989) was there-
fore carried out to monitor and analyze the explosive changes in the metropolitan
areas of the megacity Mumbai, India.

The example in Figure 10.3 shows the enormous urban sprawl of the megacity
Mumbai in India since 1973. The available satellite data from the Landsat series
enables monitoring almost 30 years of urban development, identifying axial directions
of growth, the development of peripheral satellite towns, and decreasing redensifica-
tion processes in the urban center. The urbanized areas almost quadrupled between
1973 and 2001. An artificial raster is used to analyze built-up density, or, as displayed
in Figures 10.3 and 10.4, the urbanization rates with spatial reference. Decreasing
redensification in the urban center and relocation of urban sprawl to the edges of the
urban core, forming axial development lines to satellite towns, can be quantified.

By using change detection, the pace of development and its spatial distribution,
urbanization directions, or absolute values can be measured. As an example, the
built-up density for Mumbai is displayed, showing only a moderate redensification
processes over time in zone 1 (urban center), whereas explosive urbanization is relo-
cating to peripheral zones (zones 2—4). However, urbanization per se does not imply
high vulnerability. Combining this result with the terrain information (Figure 10.2)
presented above allows a first linkage of hazard and vulnerability components.

Mumbai B 1973 £3 1990 &3 2001 W Urbanization (%) per 0,25 km? —
0 100

FIGURE 10.3 (See color insert following page 324.) Change detection and urbanization
rates in the megacity Mumbai, India.
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FIGURE 10.4 Quantification of urban sprawl with spatial reference in Mumbai, India.

Although Landsat data enable temporal and spatial analyses for the large extents
of megacities at medium resolution, very small-scale, heterogeneous, and variable
urban morphology is not detectable. Very high resolution satellite data enable map-
ping in the required detail of small-scale urban objects such as buildings, streets,
and their characteristics (e.g., structural alignment or density). Thus, the assessment
improves from an overview analysis to coverage of the heterogeneous, small-scale,
and detailed structures of urban morphology. The high spatial variability and small-
scale transitions in the urban morphology result in patterns of varying urban vulner-
ability. The basic product for analyzing vulnerability and risks is a thematic urban
land cover classification basically showing “what” is “where” in the complex urban
landscapes of megacities. In recent literature, many diverse approaches address novel
techniques for the classification of high-resolution optical remote sensing images. De
Martinao et al. (2003) use gray-level co-occurrence matrix texture features to incor-
porate the spatial context for classification, whereas Bruzzone and Carlin (2006)
present a supervised multilevel context-based system to analyze the spatial patterns
in high-resolution satellite data, and a subsequent classifier based on support vector
machines. Fauvel et al. (2006) propose a technique called decision fusing, which
combines several individual classifiers. Gamba et al. (2007) use edge extraction to
exploit object boundaries in segmentation processes for enhanced object extraction.
Meher et al. (2007) present a wavelet feature—based classification method analyzing
the spatial and spectral characteristics of a pixel along with its neighbors. To utilize
the full geometric capabilities for classification in very high resolution satellite data
such as Ikonos (1 m), Quickbird (0.61 cm), or from 2008 on Worldview I and II
(50 cm), object-oriented approaches are suitable (Barr et al., 2004; Shackelford and
Davis, 2003; Van Der Sande et al., 2003).

Here, an object-oriented, hierarchical, multilevel top-down classification approach
(Taubenbock and Roth, 2007) implemented in Definiens Developer software was
developed. The approach uses not only spectral, but also shape, textural, hierarchical,
and contextual information to achieve high classification probabilities. The multilevel
approach uses a fuzzy-based decision-fusion of the various types of information pro-
vided to extract detached houses, main street infrastructure, vegetation areas, bare
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soil, and water areas. The fixed framework eases transferability for any optical very
high resolution sensor with few adjustments on the specific spectral characteristics
of the data or regional structural particularities. The approach has been applied to
various datasets (Quickbird and Ikonos) (Taubenbdck and Roth, 2007) and mega-
cities (Istanbul, Mexico City, Hyderabad) (Taubenbdck et al., 2007b), taking about
5 days on an average PC to produce the results for one scene. The corresponding
accuracy assessment provided an overall average accuracy of this automated proce-
dure of more than 84% correctly classified houses. In comparison to the automated
approach, a different study used manual digitalization of the urban objects in one
Ikonos scene to extract 80,000 existing buildings (for Padang, Indonesia), taking 6
months to complete, but improving the accuracy to 96% (Taubenbock et al., 2008b).
The result of the implemented object-oriented approach, as an example, displays a
highly dense built-up area in the center of the megacity Mexico City, Mexico. Here,
the algorithm was tested on Quickbird data. It clearly shows the extracted street net-
work, the coexistence of small residential buildings in block alignment with large,
commercially used buildings as well as vegetated areas and bare soil (Figure 10.5).
Vulnerability and risk show a diverse spatial pattern based on various influencing
indicators. Analysis of land cover classification contributes to a structural analy-
sis of urban morphology. The built-up density distribution reflects the quantity of
potentially affected structures. The small-scale built-up density distribution is spa-
tially highly variable and does not follow any theoretical rules. Changeovers are
calculated based on the data themselves and not on predetermined borders such as
the street network. A moving window approach scanning the neighborhood of each
house pixel has been implemented. Using this highly variable density distribution,
Savitzky-Golay filtering fits a polynomial to the data surrounding each data point
(density value). The derived polynomial function is used to detect built-up density
borders. By using a curve sketching approach, the surrounding density values of
each point in the urban landscape are analyzed. The changeovers are reflected in
inflexion points (Taubenbock et al., 2006). The spatially built-up density distribution
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FIGURE 10.5 (See color insert following page 324.) Land cover classification of the dense
urban structures of Mexico City, Mexico, based on Quickbird data.
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is shown in Figure 10.6(a), characterizing the urban morphologic structure of a dis-
trict of the megacity Istanbul, Turkey.

The identification of open spaces and their location and dimension provides infor-
mation on potentially safe and sheltered areas. In addition, the main street network
extracted from the land cover classification supports the assessment of accessibility.
Thus, indicators describing the coping capacity of the urban system are used to ana-
lyze bottlenecks and identify necessary preventive measures. Figure 10.6(b) shows
the calculation of distance functions to open spaces and the main street network to
assess the accessibility of areas within the urban environment.

A further parameter to structure the urban morphology is building height. A cost-
intensive new technology is Laser Altimeter (LIDAR) for highly detailed profiles of
3-D elevations of the Earth’s surface (Gamba and Houshmand, 2000); stereo images
can also be used. If such datasets are unavailable, an indirect method using sin-
gle-look high-resolution satellite data can be used to assess building heights. Using
the classified shadow length from the land—cover classification, the corresponding
building heights can be recalculated based on the sensor azimuth angle and the sun
elevation. By adding an interpolation methodology for buildings showing incomplete
shadows, building heights have been assessed with 94.1% accuracy for three height
classes: 1-3 floors, 4—7 floors, and higher than 7 floors (Taubenbock, 2008).

As a further physical indicator to classify structures using satellite data, the
properties of building roofs were successfully used in the megacity Istanbul. The
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FIGURE 10.6 (See color insert following page 324.) Indicators contributing to a holistic
concept of risk and vulnerability.
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layer “houses” taken from the thematic urban classification was used for further
analysis. The fundamental idea behind differentiation of the two different roof
types is the coexistence of a sun facing side and a side turned away from the sun
for the case of a pitched roof. The spectral difference is in this case used to derive
the presence of gabled roofs, whereas the missing spectral difference is used to
classify flat roofs. In combination with the average building sizes of an area, usage
(residential or commercial) is indirectly reflected in the physical structures. In
addition, the temporal analysis of Landsat data presented above enables on a lower
resolution the detection of development areas, in general, and thus a coarse estima-
tion of building ages.

As an example of interdisciplinary value adding for remote sensing prod-
ucts, the synergistic usage of the derived structural building characteristics from
high-resolution satellite data and methods of civil engineering is presented (Miinich
et al.,, 2006). The assessment of the expected damage to buildings in case of an
Earthquake impact is based on the classification of buildings using physical param-
eters derived from remote sensing and the so-called capacity spectrum method from
civil engineering. The capacity spectrum method has three main steps: In the first
step, the seismological impact is calculated, which is displayed by the response spec-
trum. In the second, the physical characteristics of various building types show their
global load capacity as a result of the specific strength and deformation character-
istics of the different components of the structure. In the third step, the correlation
between the expected deformation and the probability of an expected damage grade
is derived. Damage functions link the seismic impact and the expected damage of
the structure.

Figure 10.6(c) shows the calculated probability of damage grades for Zeytinburnu,
Istanbul. It shows high structural vulnerability in the northeast of the district, identi-
fying high-risk areas in case of an Earthquake.

Results show the broad capabilities of remote sensing data and methods for sup-
plying up-to-date and area-wide physical information on the urban environment to
support the assessment of hazards and vulnerability, and thus risk. The physical
urban patterns reflect the spatial nature of risk and vulnerability patterns.

10.3.1.2.2  Demographic Sphere

Furthermore, knowledge of the physical structure of urban morphology can be used
to indirectly derive further parameters crucial for risk management. The basic idea
behind inferring the population distribution is based on a correlation between the
structural characteristics of the urban environment and its population. The hypothesis
is based on the assumption that populations living in areas showing nearly similar
housing conditions will have homogeneous social and demographic characteristics
(Baudot, 2000; Wlodarczyk, 2005). The distribution of a known total population
following the structural characteristics of an urban morphology is determined by
assuming a dependency between numerical and spatial units. Here, homogeneous
urban zones are reflected by areas of similar urban morphology characteristics such
as built-up density, building heights, the floor area of buildings, and land use. This
information is used to correlate the static urban morphology to dynamic population
distribution.
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Thus, a top-down distribution method has been implemented to estimate the
daytime population based on the floor areas in the various zones. The information
on land use has been used to estimate a relocation of population distribution during
nighttime (Figure 10.7). A spatial shift from commercially used areas to areas clas-
sified as residential has been mapped (Taubenbock et al., 2007a). The result is a local
distribution of the generalized total population information based on the spatial unit
of a whole district. The benefit appears in the significant spatial differences of popu-
lation densities within the district. Thus, the total population is resolved into smaller
units, resulting in a spatial coexistence of maximum extremes from open spaces
with no inhabitants to more than 60,000 inhabitants per km? in high-density residen-
tial built-up areas with buildings containing more than seven floors. This provides
more specific and systematic knowledge for city planners, economists, ecologists,
and resource managers to support sustainable development and to understand the
chronology of urban dynamics.
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FIGURE 10.7 (See color insert following page 324.) Nighttime population estimation.
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The analysis of our example — Istanbul’s Zeytinburnu district — shows
basically higher daytime than nighttime population. From this observation, it follows
that commuters working in the large commercial areas increase the daytime popula-
tion significantly compared to the permanent residents. This is expressed by a large
difference between nighttime and daytime populations in the commercial areas.
Moreover, in the residential areas an immense increase of population during the day
can be observed. This suggests predominantly mixed use, with business areas on the
ground floors. An accuracy assessment has been carried out based on a comparison
to population data within a 500 x 500 m raster in Zeytinburnu (Erdik, 2002). The
results support the hypothesis that population distribution correlates directly with
the structural characteristics of the urban environment. The absolute values in the
corresponding test raster are consistently of the same dimension. This shows the
capabilities of remote sensing to distribute demographic input parameters based on
an analysis of urban structural characteristics (Taubenbdck et al., 2007b). Although
remote sensing cannot accurately map cadastral data, it can provide a fast assessment
of the correct dimension of a population based on a correspondence to the dynamic
development in an urban area.

This precise knowledge allows an analysis of population flows, carrying capaci-
ties, localization of spatial and temporal population patterns, catchments areas, and
necessary supply and disposal units, as well as an assessment potential to quan-
tify potential emergency measures. In short, the methodologies provide up-to-date
data and correctly dimensioned information for decision makers managing highly
dynamic urban areas.

10.3.1.2.3  Socioeconomic, Ecological, and Political Sphere

As discussed above, the capabilities of remote sensing are predominantly linked
to direct derivations from image information. The indirect correlation of struc-
tural characteristics directly derived from satellite data with population informa-
tion or structural vulnerability showed synergistic effects to achieve value-added
products.

A further step is the analysis — if socioeconomic indicators are reflected in
the physical urban morphology. The possibility of deriving parameters such as
built-up density, building sizes, building height, location, or land use enables a
semantic classification of urban structure types. As an example, an unstructured,
organic, high-density built-up area in a peripheral location, with low (residential)
buildings, and maybe with rusted roofs, allows the derivation of a semantic class,
that is, a slum. Thus, socioeconomic parameters such as high unemployment rate,
low income, or low education levels can be assumed. Future research is intended
to identify socioeconomic parameters that are, in fact, reflected in physical urban
morphology. In addition, direct methods can be used to assess economic indi-
cators such as the measurement of rudimentary or nonexisting infrastructure
(transportation).

Figure 10.8 shows the differences between a slum typically featuring the
above-mentioned physical parameters and a structured, planned area of detached
medium-sized buildings, with a high vegetation fraction and good infrastructural
connections. Thus, for the latter, a difference in socioeconomic indicators for the
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FIGURE 10.8 Comparison of physical urban morphology to correlate to socioeconomic
parameters in the megacity Cairo, Egypt (source: Google Earth).

population living there is reflected by the physical urban morphology. Figure 10.8
visualizes the urban morphology discrepancy using the example of the megacity
Cairo in Egypt.

In the ecologic sphere of the vulnerability outline, direct information can be
derived from satellite data. The above presented urban sprawl, urban expansion in
ecologically fragile areas, and vegetation fraction contribute indicators on ecologic
stress by an urban system. Eventually, the collation of the various aspects of vulner-
ability and hazards enables a substantial information system to be provided aiming
at educating, raising awareness, and thereby also influencing the political thought
processes. Apart from scientific studies, an established information system is there-
fore the basis for managing and governing risks with political support.

10.3.2 DisAsTER PHASE

10.3.2.1 Ad Hoc Coordination and Rapid Mapping

The substantial information basis generated before an expected disastrous event
enables ad hoc coordination during the disaster. A first step suggests the calcula-
tion of expected damage grades for the actual scenario. Thus, a first assessment of
affected structures and affected people enables localization of focus areas and the
diagnosis of the dimension of the impact. Using this information basis, the coordina-
tion of a fast reaction can be supported and accomplished.

In a further step, the needed shelter areas can be spatially identified by analyzing
their best location with respect to affected areas. Accessibility to those areas can be
assessed using an analysis of the street network and distance functions in combina-
tion with a structural damage assessment. That ad hoc analysis is the foundation for
ad hoc coordination and reaction measures during or very shortly after a disastrous
event, based on spatial information surveyed before the event and used to assess the
situation. But, the capabilities of remote sensing enable in addition the analysis of
satellite data recorded shortly after the event to obtain current information on de
facto impacts.
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Accurate and spatially precise information on the damage caused is of vital
importance for rescue and relief operations and to mobilize resources for repair and
recovery (Pesaresi et al., 2007; Saito and Spence, 2004). Fast acquisition of satellite
data from the affected area enables a measurement of the actual damage caused by
the impact. In case of a disaster on a large scale, the International Charter of Space
and Major Disasters (http://www.disasterscharter.org) provides satellite data from
different sensors. It focuses on the preprocessing of satellite data, a value-adding
step, and visualization of the results. Critical elements are hereby the availability of
essential datasets, the processing time, the quality of information extraction, and the
usefulness of the products for the end users (Allenbach et al., 2005; Buehler, 2007).

Voigt et al. (2007) showed many examples of rapid mapping products based on
multisource satellite data. The applications they presented pertained to tsunami
impact, forest fire mapping, Earthquake damage assessment, and landslide mapping.
Assessment of the dimension and its spatial distribution is elementary information
for fast and coordinated relief measures.

The example in Figure 10.9 shows a product produced by the DLR-ZKI (Center
for Satellite Based Crisis Information) to support the spatial extension of flooding
as a basis for supporting, managing, and coordinating relief activities. Up-to-date
acquisitions of satellite data show the dimension and location of flooded areas of the
megacity Dhaka, Bangladesh, during the monsoon, and provide critical information
for coordinating and directing rescue and recovery operations.

BANGLADESH-DHAKA City and Outskirts 1:50.000
A T8 1"5357, e

FIGURE 10.9 (See color insert following page 324.) Flooding of the megacity Dhaka,
Bangladesh. Rapid mapping product produced at DLR-ZKI to derive up-to-date spatial infor-
mation for relief operations. (Image from the Center for Satellite-Based Crisis Information.
With permission.)
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10.3.3 PoOSTDISASTER PHASE

The dimension and dynamics of megacities make achieving an area-wide and consis-
tent information basis a difficult task. Remote sensing supports an assessment of the
impact by answering questions such as “where,” “what,” and “how many.” Postdisaster
change detection provides information on the degree of damage caused, and in conse-
quence the amount of probably affected people and their spatial distribution.

Remote sensing data and methodologies are increasingly valuable as postdisaster
damage assessment tools. Recent studies demonstrated that physical damage in urban
environments can be identified using various datasets. Change detection in the aftermath
of disastrous events using very high resolution optical satellite data enables the mea-
surement of changes and thus, detection of structural damage and assessing its extent
(Al-Khudhairy et al., 2005; Saito et al., 2004; Bitelli et al., 2004; Voigt et al., 2007).

In addition, radar technology supports weather-independent postdisaster dam-
age detection. SAR systems illuminate the Earth’s surface and record the intensity
and the phase information of the backscattered signals. The radar return is strongly
influenced by topography and the geometry of the surface structure — in particular,
the small-structured and heterogeneous urban morphology entails effects such as
foreshortening and layover, shadow, and double bounce (Ulaby, 2006). Nevertheless,
changes in the urban structure such as the collapse of buildings affect the backscat-
tering process. By using the coherence and intensity information from the back-
scattering process, changes in multidate imagery can be detected. As an example,
texture analyses of the intensity images were used for damage assessment purposes
(Bignami et al., 2004). Gamba et al. (2000) extracted and characterized building
structures starting from the three-dimensional terrain elevation data provided by
interferometric SAR measurements. Interferometric coherence is a very sensitive
measure for mapping damages that occurred during a disastrous event. Hoffmann
(2007) defines a coherence change index to interpret damage quantitatively. In addi-
tion, Huyck et al. (2002) combined SAR and LIDAR technology to assess changes.

The prerequisite for SAR interferometry is a coherent backscattering process for
the different observation dates. The degree of similarity of these reflections can be
estimated from the SAR data themselves and is provided as the interferometric SAR
coherence. Of course, collapse of buildings reduces coherence. To separate damage
from other decorrelation effects, pre- and coseismic coherence images were analyzed.
Figure 10.10 shows an example of the effects of the magnitude 6.6 Earthquake that
occurred in the city of Bam, southeastern Iran, in 2003. Five SAR scenes acquired by
the Envisat-ASAR instrument were used to derive coherence changes. The color bar
indicates changes in coherence after the Earthquake event. White means no changes,
dark blue indicates change to a higher coherence, and areas in brown show where sig-
nificant decorrelation took place. This decorrelation was mainly caused by the collapse
of buildings. The results have been projected on administrative districts in Bam.

New high-resolution radar sensors on satellites such as TerraSAR-X, Cosmo
SkyMed, or Radarsat-2 are initiating a new era of satellite-based applications and
will enable more highly detailed and accurate mapping of damage. Figure 10.11
shows a comparison of Envisat-ASAR data featuring a 30-m spatial resolution to
the spotlight imagery of TerraSAR-X featuring 1-m spatial resolution for the urban
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FIGURE 10.10 (See color insert following page 324.) Mapping damage from an earth-
quake in an urban environment using interferometric coherence.

FIGURE 10.11 Comparison of intensity imagery of (a) Envisat and (b), (c) TerraSAR-X.

area of Bam, Iran. Nowadays, structural pattern and objects of the small-scale and
heterogeneous urban environment are clearly detectable and provide a great degree
of detail for damage detection and assessments.

Since both SAR and optical images provide information for building detection, it
is promising to synergistically use both types in the context previously described. By
using methods of data fusion (Gamba et al., 2005; Hellwich et al., 2000; Tupin and
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Roux, 2003), improvement in the detection of building damage has been achieved
(Stramondo et al., 2006, 2007).

10.4 CONCLUSION

The study presents the capabilities of remote sensing by using a theoretical risk
framework as an outline. Following this outline, how various indicators derived
from remote sensing data contribute to risk and disaster management before, during,
and after an event is discussed. The resulting data products are presented using the
example of selected megacities of the world. In particular, this study aims to address
several questions regarding risk management in megacities. How can risk manage-
ment be conceptualized? What are the capabilities and limitations of remote sens-
ing that contribute in assessing risk and supporting risk management? What are the
future perspectives regarding megacities and remote sensing?

Risk management can only be as good as the information provided. The presented
risk framework aims at a theoretical conceptualization of the complex influencing
components and temporal phases of a potential disastrous event. Systematization of
the abstract terms describing vulnerability and hazards, and thus risks, suggests mea-
surable indicators. Advantages of this conceptual approach result in indicators that are
quantifiable, that show spatial reference, and are understandable. Indicators from a
physical, demographic, social, economic, ecological, or political perspective contribut-
ing to a holistic concept make risk management and decision making a complex task.

Explosively growing megacities around the globe struggle with current data
availability. The capabilities of remote sensing are manifold, considering the vari-
ous types of available satellite data, and providing up-to-date and area-wide data
promptly is a basic strength of remote sensing. In any case, the predominant poten-
tial lies in up-to-date physical coverage of complex urban morphology. Mapping
spatially variable urban structures reflects patterns of urban vulnerabilities and
risks. Physical parameters such as hazard-prone areas based on surface or struc-
tural characteristics such as distances to safe areas or building stability reflect
vulnerability. The methods presented in this work are transferable and their qual-
ity and diversity for mapping and analyzing urban environments from various per-
spectives is high. By using physical urban structures, value-added products that
correlate ancillary datasets can be assessed. Capabilities to indirectly correlate
physical structures with the dynamic distribution of population are presented.
Indirect derivation of parameters correlating with physical urban morphology
successfully shows population distribution and enables a structural vulnerability
assessment. Furthermore, important socioeconomic parameters such as poverty or
education level show potential for being mapped from a study of urban structures.
Ideas to correlate socioeconomic parameters with urban structures such as slums
or high-income structured urban areas are indicated. In conclusion, multisource
remote sensing data can be used to provide up-to-date, area-wide, quantitative,
reproducible, understandable indicators with spatial reference. However, limita-
tions of remote sensing are reflected in the difficulty of deriving detailed demo-
graphic information, socioeconomic indicators, or political aspects within the
holistic risk framework. The approach does not provide the accuracy of cadastral
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datasets, but does enable an assessment of the dimension and location of damage
in a quality suitable for decision making.

Future perspectives for risk management in megacities based on EO data provide
manifold directions for improvements. New sensors such as optical systems on Rapid Eye
(http://www.rapideye.de/), WorldView I and II (http://www.geoeye.com/), radar technol-
ogy on TerraSAR-X and Tandem-X (http:/www.dlr.de/tsx/start_ge.htm) and ALOS,
as well as hyperspectral satellite sensors such as EnMap (http:/www.enmap.org/) will
make possible improved temporal, spectral, and spatial coverage of the Earth’s surface.

To utilize the large amount of expected data, methodologies have to be further
improved to derive the necessary information in time. An important step toward
using the holistic risk framework is integrating and correlating multiple data types
and sources. Examples in this paper show the interdisciplinary approach of com-
bining results from remote sensing and civil engineering as well as demographic
information. A classification of physical urban morphology and its correlation with
further socioeconomic parameters is indicated.

Finally, the large information basis that can be derived from multisource remote
sensing data increases not only public perception and awareness, it also leads to
influencing political decision making, potentially leading to funding for crisis and
risk management institutions that can identify hazards, warn of risks, raise aware-
ness, mitigate damage, and coordinate relief activities.
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11.1  BACKGROUND

Throughout the world, and particularly in Europe, processes related to urbaniza-
tion, development of transport infrastructures, industrial constructions, and other
built-up areas have a significant impact on the environment, and are often modify-
ing the landscape at an unsustainable pace. In the past two decades, several steps
have been taken that aim toward achieving a better quality of life in an urban
environment. This chapter reviews the milestones and efforts within Europe to
derive urban information and monitor urban areas, heavily drawing from remote
sensing data, which have been instrumental in the implementation of a European
Urban Atlas.

In 1990, the European Commission (EC) issued a green paper on urban environ-
ment (Green Paper on the Urban Environment, 1990) addressing the main problems
in urban areas and the need to monitor their environmental conditions. This docu-
ment covered the environmental effects of urban growth not only in Europe, but also
in other parts of the world. For environmental management and sustainable develop-
ment, accurate and comprehensive spatial data are critical. The lack of appropriate
data is a major hindrance for policy makers and the scientific community. In the light
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of sustainable development, comparable information is essential, which requires a
collective effort from various players.

The Earth Summit held in Rio de Janeiro in 1992 (United Nations Conference
on Environment and Development, 1992) brought human beings into the center of
concerns for sustainable development, with the view that humans are entitled to a
healthy and productive life in harmony with nature. Subsequent efforts included con-
ferences such as Aalborg 1994, in which Local Agenda 21 — a global action plan
for sustainable development establishing the link between city and environment —
was formulated. The related Lisbon action plan in 1996 went further and led to the
Vienna Urban Forum in 1998, where a framework for action toward a sustainable
urban development in the European Union (EU) was established. In May 1999, the
European Spatial Development Perspective (ESDP) was adopted by the ministers of
the member states responsible for regional planning. Its aim is to improve the coordi-
nation of national policies in this field. It is based on three key principles: the devel-
opment of a balanced and polycentric urban system and a fresh relationship between
cities and the countryside; the assurance of equal access to knowledge infrastruc-
tures; and sustainable development — the intelligent management and conservation
of nature and cultural assets.

11.2  URBAN AUDIT

In 1999, the EC issued the terms of reference for an Urban Audit pilot project
(http://www.urbanaudit.org/) with the following objectives: to enable an assessment
of the state of individual European cities and to provide access to comparative data.
A main goal of the Urban Audit is to allow city authorities to compare their city
directly with other cities in Europe, because such comparisons can facilitate the
exchange of experience and improve the quality of European and local urban poli-
cies. Furthermore, the gathered information should inform EU member states and
the EC of the quality of life in European cities. Between 1997 and 2000, 58 cities
participated and gathered indicators of the Urban Audit in five fields: socioeconomic
aspects, participation in civic life, education and training, environment, and culture
and leisure. The successful pilot project led to an implementation of the Urban
Audit under the responsibility of the Directorate General (DG) for Regional Policy
at the EC, in cooperation with the Statistical Office of the European Communities
(EUROSTAT) and the national statistical offices. The first full-scale European Audit
took place in 2003 and 2004 with 258 participating cities (State of the European
Cities Report, 2007). The following round of the Urban Audit collected information
on living conditions in 357 large- and medium-sized cities in Europe from May
2006 to September 2007 (Figure 11.1).

The Urban Audit contains data for almost 500 variables and indicators across
domains such as demography, social and economic aspects, civic involvement, train-
ing and education, environment, travel and transport, information society, and cul-
ture and recreation.

The Urban Audit works in three different spatial levels: the city, the larger urban
zone, and the subcity district.
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Cities Participating in the Urban
Audit and Large City Audit Data
Collection 2006/2007

@ Urban audit cities
@ Large city audit cities

Sourse: UTan Augt
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FIGURE 11.1 (See color insert following page 324.) Cities participating in the Urban
Audit, 2006-2007. (Courtesy of Urban Audit.)

e The most important is the city level, where political boundaries are used
mostly to ensure that this level is directly relevant to policy makers and
politicians.

e The larger urban zone allows a comparison between the city and its sur-
roundings. The goal is to have an area from which a significant share of
the resident population commutes into the city, a concept known as the
“functional urban region.” To ensure good data availability, the Urban
Audit works with administrative boundaries that approximate the func-
tional urban region.

e The subcity districts are taken from a division of Urban Audit cities to ana-
lyze their disparities. To ensure that these districts can be compared, they
had to comply with strict population thresholds: minimum of 5000 inhabit-
ants and maximum of 40,000 inhabitants.
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An Urban Audit Perception Survey to measure the local perceptions of quality
of life in a subset of 75 European cities was conducted in 2006 to complement the
data from the main Urban Audit. The most diverging opinions of the residents were
expressed on employment opportunities, housing costs, safety, cleanliness of cities,
public transport, air pollution, integration of immigrants, and overall satisfaction
with the quality of life of their city.

Urban Audit’s most recent update is based on data from 2006 to 2007, whereas
the next one is foreseen in 2011. A new strategy is under discussion for Urban Audit
to conduct a full audit every 5 years, supported by a yearly update of the main
parameters.

11.3 MURBANDY/MOLAND

In parallel to the statistically oriented Urban Audit, the spatial dimension of urban
dynamics has been followed by Monitoring Urban Dynamics (MURBANDY)/
Monitoring Land Use/Cover Dynamics (MOLAND). MURBANDY was initiated
in 1998 with the objective of monitoring the developments in urban areas and iden-
tifying trends at the European scale. It specifically addresses issues mentioned in
the ESDP that are related to urban and regional development and those linked to
sustainable land use management, and its further implementation including the
establishment of the European Spatial Planning Observation Network (ESPON;
http://www.espon.eu). The main aim of the MOLAND project (http://moland.jrc.
it), which is coordinated by the Institute for Environment and Sustainability of
the EC’s Joint Research Centre, is to provide up-to-date, standardized, compa-
rable information on the past, current, and likely future land use development in
Europe. The work comprised the computation of indicators and the assessment of
the impact of anthropogenic stress factors with a focus on expanding settlements,
transport and tourism in and around urban areas, and along development corri-
dors (Towards an Urban Atlas: EEA/JRC report, 2002). MOLAND also directly
addresses several environmental topics at the European level, such as the actions
on sustainable urban development and related communications, the initiatives on
Environmental Impact Assessment and on Strategic Environmental Assessment.
Relevant services of the EC in the Directorate General for Regional Policy
(DG REGIO), Environment (DG ENV), Energy and Transport (DG TREN),
EUROSTAT, and the European Environment Agency (EEA) received technical
support, in terms of consultancy, provision of products, and contributions to pol-
icy work. To date, the MOLAND database has covered several urban areas (in
Europe and outside), transport corridors, and extended regions (see Figure 11.2).

MOLAND supports main EU policy areas such as:

e The 6th EC Environment Action Programme’s Thematic Strategy on
the Urban Environment, for DG ENV (Thematic Strategy on the Urban
Environment, 2006)

* Indicators for sustainable urban and regional development, for DG ENYV,
EUROSTAT, and the EEA
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e

FIGURE 11.2 MOLAND coverage in Europe. (From JRC-MOLAND project, © European
Communities, 1995-2008. With permission.)

e ESDP and ESPON for DG REGIO

e Impacts of the Structural and Cohesion Funds, for DG ENV

e Strategic Environmental Assessment of the Trans-European Transport
Networks for DG TREN.

MOLAND has served well on research and demonstration level, but was not
taken up for an operational implementation on a larger European scale. In the
future, MOLAND is expected to continue the development of indicators, whereas
mapping is transferred under Global Monitoring for Environment and Security
(GMES) services. A current focus is the further development and use of spatial
dynamic models for simulating future urban and regional development (includ-
ing transport), where simulation of urban growth and related sprawl is becoming
more important in a regional context based on policy and zoning regulations
(Urban Sprawl Report 2006, EEA, 2006). A further line of action is monitoring
sustainability and adaptation to natural hazards such as floods, droughts, deser-
tification, and forest fires, and prevision of related vulnerabilities. MOLAND
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contributes to the development of an integrated methodology for the assessment
of current and future natural risks in combination with high-resolution regional
climate scenarios and hydrological and geophysical models.

11.4 GLOBAL MONITORING FOR
ENVIRONMENT AND SECURITY

GMES (http://www.gmes.info/) is an EU-led initiative to secure Europe with an auton-
omous and operational information system in support of the environment and security
policies. The initiative is set up jointly by the EC and the European Space Agency
(ESA; http://www.esa.int). It is driven by the need to improve the monitoring of the
European and global environment in view of pursuing the sustainable management
of our resources and the security of the citizen. GMES was formed in Baveno, Italy,
in 1998 with the formulation of “Global Monitoring for Environmental Security: a
Manifesto for a New European Initiative” by mainly representatives of space agencies
and scientists. The Baveno Manifesto demonstrated the need for global information
services and expressed an ambitious vision for Europe to tackle environmental issues
with its advanced technological and scientific capabilities. It calls for a long-term com-
mitment to the development of space-based environmental monitoring services for
Europe. In 2001, both ESA and the EC obtained approval for some €100 million each
to initiate GMES services and build up a sustainable user community. In 2005, the
roles of the two organizations in GMES were clarified further, where ESA’s task is to
define the technical specification and to implement the space component, and EC’s
function is to identify and develop services relying on both in situ and remote sensing
data, and to define and set up a sustainable governance structure (Liebig, et al., 2007).

11.5 GMES SERVICE ELEMENT

Under the ESA GMES Service Element (GSE; http://www.esa.int/gmes), 10
service portfolios were developed, where each responds to user needs in a specific
sector of environmental or security policy. One of the thematic areas ESA addressed
in this framework is the monitoring of urban areas, covering issues related to urban
agglomeration such as urban sprawl, modeling and forecast in urban planning,
changes in urban land use, environmental monitoring, to name a few. During GSE’s
first stage — the consolidation phase (2003-2005) — the GMES Urban Services
project (GUS; http:/www.gmes-urbanservices.info) conducted a policy-foundations
analysis documenting the underlying drivers of the demand for information in the
urban policy sector and identifying products and services that could be offered over
decades. The objective of the GUS project was to consolidate a portfolio of products
derived from satellite data and other sources in close cooperation with a selection of
users (cities, regional authorities, and DG REGIO on the European level) and dem-
onstrate the associated services.

On the city level, the national and European policies force municipalities to
ensure environmentally friendly and economically sound management of local
resources. The GUS project demonstrated the potential of geospatial information
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from remote sensing imagery to support local authorities in the required planning,
monitoring, and control of urban development as well as in the implementation of
environmental policies at the urban level. The products and services are designed
to exploit this information from remote sensing data in a reliable, consistent, and
cost-efficient manner.

On the Pan-European regional level, the related policies require sustainable
environmental management as well as infrastructure planning and development.
Standardized geospatial information, which is comparable between all European
regions, is a necessary source for profound decision-making processes by imple-
mentation agencies at European, national, or regional levels. The developed products
and services consider these needs by standardized and transferable modules of local
products as well as special regional products and lower scale.

To encourage a more sustainable development in urban conglomerations well as
the urban fringe, and to evaluate the compliance and success of planning measures,
detailed knowledge of urban land use is essential for monitoring and analyzing
changes on a geolocated basis. The GUS products, oriented to serve the strategic
urban planning needs all over Europe, are clustered into four categories:

e Land use, including change detection and modeling tools for urban planners
and regional authorities

e Urban Development Control: short-term hot spot monitoring for urban plan-
ning and discipline enforcement

* Environment Quality: noise, sealing, thermography, and risk mapping

e Regional Products: basic land use and sealing maps for monitoring of
soil consumption.

Urban Atlas falls in the first category of the GUS portfolio, which contains the
core products land use and land use change, where a generalized workflow and a
standardized output is applicable for all European municipalities. The classes and
legend are an evolution of the MOLAND concept taking into account the use of
high-resolution remote sensing data, enabling a more automatic classification and an
independence from additional information such as socioeconomic data. Figure 11.3
shows an example of a satellite image and derived map of Erfurt, Germany. The
core products are extended to highly customized products and services by the local
service providers. These local variations ensure that the individual needs of munici-
palities with different socioeconomic environment and with unique geographic char-
acteristics can be met.

With these services, the authorities responsible for urban planning on local,
regional, European, and global levels could receive up-to-date and homogeneous
information allowing them to respond to political and market (economic, social,
technological, and environmental) drivers.

In the second stage of GSE — the implementation phase (2005-2008) — land-ori-
ented services consolidated by earlier projects such as SAGE (Service for the Provision
of Advanced Geo-Information on Environmental Pressure and State), GUS, and
Coastwatch were joined in the GSE Land project (http:/www.gmes-gseland.info)
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Artificial Surfaces

Urban Fabric
[ Residential continuous dense urban fabric

Artificial Non-agricultural Vegetated Areas

Green urban areas

[T Residential continuous medium dense urban fabric 85 Sport and leisure facilities

Informal settlements

I Residential discontinuous urban fabric

[ Residential discontinuous sparse urban fabric
Residential urban blocks
Informal discontinuous residential structures

Industrial, Commercial and Transport Units
Industrial areas
Commercial areas
Technological infrastructure
+8¥ Road and rail networks and associated land
[ Port areas
Airports
Mine, Dump and Construction Sites
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© Inland wetlands
Coastal wetlands
Water Bodies
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FIGURE 11.3  (See color insert following page 324.) Satellite image and derived land use
map from city of Erfurt, Germany. (Courtesy of GUS, H.G. Geo Data Solutions.)
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to demonstrate their implementation on a larger scale and to work toward their
sustainability. Notwithstanding the progress that has been made in growing user
engagement and support for the individual services during the GSE service consoli-
dation phase, it is recognized that none of these services can be considered fully
sustainable. To achieve sustainability, all services must ultimately satisfy three
critical requirements. They must become:

e Available — readily accessible to users when needed, now and in the
future;

* Reliable — consistently meeting user-defined quality and standards;

* Affordable — where benefits justify the costs.

GSE Land tackles these sustainability criteria for four end-to-end service lines, that
is, European Urban Atlas, impervious areas and sealing levels, inland water qual-
ity and irrigation/agricultural water consumption, and an intermediate multipurpose
land cover service on the European scale. Furthermore, user feedback emphasizes
the need for improved validation of the services to increase acceptance.

Within GSE Land, the Urban Atlas line has concentrated on the consolidation
of the European product mainly for the use of DG REGIO as its main objective
before further value adding toward the specific needs of local administrations and
municipalities. This took into account the announcement of the EC Fast Track
Services (FTS) on Land, Marine, and Emergency in 2005, in which Urban Atlas was
identified as the local component of the Land Monitoring Core Service (LMCS).
The establishment of the Implementation Group of the LMCS (LMCS Strategic
Implementation Plan, 2007) facilitated the interaction between the GSE Land proj-
ect and the EC and provided an interface toward several European users.

GSE Land uses semiautomated processing chains for the generation of the up-to-
date urban land cover/land use information. SPOT 5 satellite images serve as basic
input data together with topographic maps and a road network. Subsequently, image
analysis results are controlled and manually improved with the help of supplemen-
tary information provided by city authorities. In recent years Google™ Earth has
been increasingly used as an additional interpretation aid and to better identify the
nature of objects, but not to delineate them. Aerial photography samples are used by
an independent external validation team to validate the accuracy (GSE Land Service
Validation Protocol, 2008). The basic urban land use information is enhanced by
urban indicators such as the degree of sealing, that is, the different levels of imper-
vious areas, based on Normalized Difference Vegetation Index and supplementary
data for detailed and accurate up-to-date sealing mapping. Through this approach,
the products are embedded and linked to the European sealing layer from EEA.

11.6 URBAN ATLAS

11.6.1 NOMENCLATURE AND PRODUCT SPECIFICATION

The European Urban Atlas provides very high resolution hot spot mapping of urban
functional areas collected repeatedly and homogenously over larger European
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cities. This land use and land cover database on cities’ territorial evolution allows
users to link spatial information with other parameters such as social economical
statistics to produce indicators in the assessment of sustainable development of cit-
ies for urban administrations, regional and European institutions, and the European
citizen.

The Urban Atlas nomenclature is based on the work done in MOLAND and its
adaptation in GUS and GSE Land. It has been discussed and developed with DG
REGIO and designed to fit their requirements. It encompasses 22 urban classes in
four hierarchical levels and four nonurban classes listed in Table 11.1. The minimum
mapping unit for all classes is 0.25 ha.

The derived product features summarized in Table 11.2 reflect the need to work at
the European level with a limited input data set (EO data, street network, and topo-
graphic maps) and for all cities independent of additional local datasets.

11.6.2 URBAN ATLAS VALIDATION

A major effort was placed on the qualification of the Urban Atlas service. The exer-
cise was planned as a qualification of service providers on this service, but it served
as well in identifying problems in harmonization and common understanding of the
specification and in reassessing the quality assurance procedure. Two 10 x 10 km test
sites in Bremen, Germany (representing a larger central European city), and Badajoz,
Spain (as a smaller Mediterranean city), were selected for the benchmark approach.
Ten service providers took the challenge to deliver, within 4 weeks, their classifica-
tion based on the same standard input data:

e SPOT 5 satellite images with 2.5 m resolution (multispectral, pan-sharpened)

o Extract of the TeleAtlas database for the respective area with road informa-
tion and points of interest

* Topographic map (1:25,000)

e Mapping guidelines for GSE Land product M1.1 — Urban Atlas (Urban
Atlas Mapping Guide, 2008)

A point sampling with approximately 800 points was chosen for the validation
approach. For urban and nonurban parts of the pilot area, different sampling grids
were designed, taking into account that a 90% confidence interval of the accuracy
assessments should be reached. A reference interpretation for each city was pro-
duced by a team of five experts, who first individually interpreted the sampling
points based on the standard data set and higher resolution data and then agreed
on a common reference. The validation results were obtained by overlaying the
service provider data with the results of the expert validation in a GIS system, that
is, for each point the class code of the reference interpretation was compared to the
class code attribute by the service provider at the same location. The mapping, that
is, object delineation and interpretation, was done at the most detailed level of the
nomenclature.
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TABLE 11.1

Urban Atlas Nomenclature

Urban Atlas No.  Vector Data Code Nomenclature

1 Artificial surfaces

1.1 Urban fabric

1.1.1 Continuous urban fabric

1.1.1.1 11110 Residential continuous dense urban fabric

1.1.1.2 11120 Informal continuous dense settlement

1.1.2 Discontinuous urban fabric

1.1.2.1 11210 Residential discontinuous dense urban fabric
(sealing layer: 50-80%)

1.1.2.2 11220 Residential discontinuous medium dense urban

fabric

(sealing layer: 30-50%)

1.1.2.3 11230 Residential discontinuous sparse urban fabric
(sealing layer: 10-30%)

1.1.2.4 11240 Informal discontinuous residential structures

1.1.3 Special urban fabric features

1.1.3.1 11310 Residential urban blocks

1.1.3.2 11320 Isolated urban fabric

1.2 Industrial, commercial, and transport units

1.2.1 Industrial, commercial, public, and private units

1.2.1.1 12110 Industrial areas

1.2.1.2 12120 Commercial areas

1.2.1.3 12130 Public, military, and private services not related to

the transport system

1.2.1.4 12140 Inland artificial infrastructure related to water

1.2.2 Road and rail network and associated land

1.2.2.1 12210 Fast transit roads and associated land

1.2.2.2 12220 Other roads and associated land

1.22.3 12230 Railways and associated land

1.2.3 12300 Port areas

124 12400 Airports

1.3 Mine, dump, and construction sites

1.3.1 13100 Mineral extraction and dump sites

1.3.3 13300 Construction sites

1.3.4 13400 Land without current use

1.4 Artificial nonagricultural vegetated areas

1.4.1 14100 Green urban areas

142 14200 Sports and leisure facilities

2 20000 Agricultural areas

3 30000 Forests and seminatural areas

4 40000 Wetlands

5 50000 Water
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TABLE 11.2
Urban Atlas Product Features

Urban Atlas

Input data sources

Ancillary data optional for all classes

Ancillary data required for certain classes

Geometric resolution (scale)
Geographic projection

Reference system

Positional accuracy

Thematic accuracy

Update frequency
Base data topicality

Delivery format

Data type

 Digital thematic map with thematic classes based
on CORINE LC nomenclature and
GUS legend

e Earth Observation (EO) Data with 2.5 m or less
spatial resolution multispectral or pan-sharpened
(multispectral merged with panchromatic) data.
The multispectral data includes near-infrared band

» Topographic maps at a scale of 1:50,000 or more
detailed

e COTS navigation data for the road network

* Areas of interest for Urban Atlas mapping as
determined by DG REGIO.

» Sealing layer based on FTS specifications for
degree of sealing for level 3 classes 111 and 112
and level 4 classes (1.1.2.1, 1.1.2.2, 1.1.2.3,
1.1.2.4)

* All input data should be described by metadata

e COTS navigation data: points of interest, land use,
land cover, water areas

* Google™ Earth as interpretation help, but not for
delineation

e Local city maps

e Local zoning data (e.g., cadastral data)

¢ Field check (on-site visit)

e Very high resolution imagery (better than 1 m
ground resolution, e.g., aerial photographs)

1:10.000; minimum mapping unit = 0.25 ha

As per user request, but uniform within

project area.

As per user request, but uniform within

project area.

+5m

e Minimum overall accuracy for level 1 class 1
“artificial surfaces™: 80%

e Minimum overall accuracy (all classes): 85 %

* Methodology for quality control has to be defined

3-5 years

To be determined

Topological correct GIS file

Single part features

Vector
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Figure 11.4 shows one of the 10 classifications of Badajoz, whereas Figure 11.5
shows the divergence image of Badajoz, which brings into evidence the level of
agreement between the service providers. The colors show the level of agree-
ment for the individual mapping elements between the 10 service providers, in
which 10 — the highest score (in dark green) — means that all 10 service provid-
ers have interpreted the object in the same way (same class code). On the other
extreme, 0 (red) means that all service providers have labeled this particular object
differently.

The exercise showed that the product specifications were still ambiguous and
need improvement. Second, it highlighted a certain subjectivity in the mapping of
land use classes. The accuracy assessment showed that the accuracy requirement of
80% for urban points could hardly be reached at the most detailed level. The aggre-
gation to level 3, which is in line with DG REGIO, and the integration of the soil
sealing degree from the precursor FTS soil sealing layer will lead to less uncertainty
and improved accuracy values. After considering these findings, the specifications
and mapping guidelines for the Urban Atlas were updated and resulted in the revised
nomenclature already presented in Table 11.1.
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FIGURE 11.4 (See color insert following page 324.) Badajoz, Spain, example of Urban
Atlas classification. (Courtesy of GSE Land.)
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FIGURE 11.5 (See color insert following page 324.) Badajoz divergence image — from
red for no agreement to green for total agreement among the 10 service providers. (Courtesy
of ETC-Lusi.)

11.6.3 URBAN ATLAS APPLICATIONS

Many downstream applications and information services can be based on Urban
Atlas, for which a few examples are presented here. Information on urban green is
vital for planning, design, and maintenance of the urban environment. An inventory
of urban green is essential for a proper green management within the urban zone.
Figure 11.6 shows an urban green map of Poperinge in Belgium.

“Green urban area” and “public open area” are indicators of Urban Audit and
MOLAND. Figure 11.7 shows these indicators for the city of Madrid, extracted from
the Urban Atlas and local population statistics.

Land use classifications can be combined with other data such as population
statistics to visualize and upgrade regional population data. Figure 11.8 shows a
rescaled inhabitant density and quantity map with an increased spatial resolution of
the region of Ieper in Belgium.

Detailed soil sealing maps provide an assessment of land consumption with its
corresponding sealing intensity, and can also be used for monitoring the land take
trends over a certain period. This product helps in identifying conflicts in land use
and supports sustainable and harmonized solutions. For Munich, Germany, two pro-
cessing levels of soil sealing maps are shown; the pixel-based product (Figure 11.9),
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FIGURE 11.6 (See color insert following page 324.) Urban green map for the city of
Poperinge, Belgium. (Courtesy of GUS — Eurosense.)

- Total population
- Population with access to POA

Percentage of Citizens Living
within 300 m from POA
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FIGURE 11.7 Urban audit indicators “green urban area” and “public open areas” for
Madrid, Spain. (Courtesy of Indra Espacio.)
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FIGURE 11.8 Land use and derived population estimation for the region of Ieper, Belgium.
(Courtesy of GUS — Eurosense.)
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FIGURE 11.9 (See color insert following page 324.) Pixel-based soil sealing map of
Munich, Germany. (Courtesy of GSE Land — H.G. Geodata Solutions.)
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FIGURE 11.10 (See color insert following page 324.) Object-based soil sealing map of
Munich, Germany. (Courtesy of GSE Land — H.G. Geodata Solutions.)

which is similar to the EEA FTS sealing layer, can be further treated toward the
higher-level object-based product (Figure 11.10).

11.7 OUTLOOK

In the framework of the European GMES LMCS portfolio, the local component
Urban Atlas foresees the production of the top 500 urban areas in Europe in support
of the Urban Audit. This mapping database will provide for the first time homo-
geneous and up-to-date spatial information on urban environments, allowing for
a comparison of different cities all across Europe. The first step is a call of DG
Enterprise and Industry on behalf of DG REGIO for an Urban Atlas mapping of
priority cities issued in May 2008. Within the next few years, there will be a spe-
cial focus on implementing and developing more tools in order to reach a higher
degree of automation also in the direction of change mapping. Assuming a suc-
cessful run of the current implementation, it is likely that there will be a regular
update of all major European urban conglomerations using the specified Urban
Atlas methodology in the same timeframe as the Urban Audit. For cities outside
of Europe, the methodology could be adapted, enabling worldwide comparison of
urban settlements.

© 2009 by Taylor & Francis Group, LLC



248 Human Settlement: Experiences, Datasets and Prospects

ACKNOWLEDGMENT

The author wishes to thank all contributors to the projects that paved the way to a
European Urban Atlas, such as MOLAND, Urban Audit, GMES Urban Services,
and GSE Land, which provided figures and examples for this chapter. Thanks for all
the comments and suggestions improving the quality of this review.

REFERENCES

Green Paper on the Urban Environment — Communication from the Commission to the
Council and Parliament, COM(90), 218, 1990.

GSE Land Service Validation Protocol, 2008. Available online at: http://www.gse-land.
info.

Liebig, V., Aschbacher, J., Briggs, S., et al., GMES — Global Monitoring for Environment
and Security: The second European flagship in space, ESA Bulletin, 130, May 2007.

LMCS Strategic Implementation Plan, 2007. Available online at: http://www.gmes.info.

Report of the United Nations Conference on Environment and Development A/CONF.151/26,
Vol. I, Rio de Janeiro, June 1992.

State of European Cities Report, DG REGIO, 2007.

Thematic Strategy on the Urban Environment, Communication from the Commission to the
Council and Parliament COM(2005) 718, 2006.

Towards an Urban Atlas, EEA/JRC Report, 2002.

Urban Atlas Mapping Guide, GSE Land, 2008. Available online at: http://www.gse-land.
info.

Urban Sprawl Report 2006, EEA, 2006.

© 2009 by Taylor & Francis Group, LLC



Part |V

Critical Issues and Avenues
for Future Research

© 2009 by Taylor & Francis Group, LLC



12 Semantic
Characterization
of Human
Settlement Areas

Critical Issues to
be Considered

Louisa J.M. Jansen

CONTENTS
12,1 INErOAUCHION «.eeiueiiieiieiieteeiie ettt et ettt st e e enee e 251
12.2  Semantic Aspects of CategoriZation...........ccevueeuererriereeeiieniieesieeeeeeene 254
12.3  Influence of Semantics on Change Analysis, Monitoring,

ANA MOARIING ...ttt 255
12.4  Semantic Differences between Land Use and Land Cover Class

ANA DALASCES ...ttt ettt ettt et et 257
12.5 Remote Sensing and Classification...........ceceeveeriereerienieiiesieeecee e 258
12.6  Semantics and Metadata..........cceeeeriieieniiriene e 259
12.7 Approaches for Semantic Characterization: Standardization

and HarmonizZation ............cecueeieriirienieeie et 260
12.8  The Way FOrward .........cocooviiriiiiiiiiieeieeeee et 262
ACKNOWICAGMENES......outiiiiiiieiieitiee ettt ettt sb e eee 263
RETEICICES ...ttt ettt ettt 263

12.1 INTRODUCTION

Currently, approximately half of the world population lives in urban areas and this
is anticipated to exceed 60% by 2030, with 90% of projected urbanization occur-
ring in low-income countries (UN, 2004). The rapid and uncontrolled development
of human settlement areas has many potentially detrimental effects, including the
loss of valuable agricultural and ecologically sensitive lands, enhanced energy
consumption, and greenhouse gas emissions from increasing private and public
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vehicle use (Guindon et al., 2004). Timely information on changes in human
settlement type, distribution, location, and size, and the probable effects of changes
is therefore needed, as well as information on social, demographic, and economic
parameters.

Human settlement areas are among the most complex structures created by human
societies. Growth and dynamism are two of the elements that characterize such areas
(Barredo et al., 2003). Urbanization processes are a basic element in the dynamics of
human societies. Through the changes in the spatial distribution of population and
resources, these processes reflect the links and relationships between urban and rural
areas, economic factors, and social classes and groups (Bonifazi and Heins, 2003).
Growth management and sustainable development are widely considered essential
to maintain the quality of life in metropolitan landscapes (Daniels, 1999; van der
Valk, 2002).

Urbanization as land cover, in the form of built-up or paved-over areas, occu-
pies less then 2% of the Earth’s surface (Gruebler, 1994). Changes in the spatial
extent of human settlement areas per se, therefore, do not appear to be central in
global change dynamics. However, although the areas may be small, urbanization
leads to transformations of urban-rural linkages, the so-called urban “ecological
footprint” (Lambin et al., 2001). These urban-rural transformation processes are a
causative factor of the current renewed interest in the complex dynamics of urban
systems. Current international thinking on urban policy in multilateral institutions
(e.g., World Bank and United Nations) emphasizes a strong role for municipal local
governments. UN Habitat argues that decentralization will increase economic effi-
ciency and political accountability, and hence help reduce urban poverty (Devas,
2004; UN Habitat, 2005). A sustainable balance between the influences of present
and proposed human activities and the sensitivities of the urban and rural environ-
ment needs to be found.

For human settlement characterization, the interest lies in the land use and not the
land cover category (Guindon et al., 2004), in contrast to Herold et al. (2006), who
consider land cover of prime importance. Many scientists, working in disciplines
that are not related to remote sensing, view land use as the elemental variable driving
many processes, as observed by Comber et al. (2007). One should note that in several
languages there is no equivalent term for “land cover” (in some, such as French or
Italian, it is closer to “soil cover”), whereas there are similar terms for “land use”
(landgebruik in Dutch and Landnutzung in German).

Human settlement areas are characterized by a complex pattern of land use.
Within the study of spatial decision making, several land-use allocation factors have
been identified as determinants of urban activities (Barredo et al., 2003): (1) envi-
ronmental characteristics, that is, constraints for urban growth; (2) local-scale neigh-
borhood characteristics (e.g., present and past land use patterns and their dynamics);
(3) spatial characteristics of the cities (e.g., distance to the city center, accessibility,
flows or transport networks); (4) urban and regional planning policies (e.g., land use
(zoning) — plans that regulate the legal aspects of occupation of land uses in space
and time); and (5) factors related to individual preferences, level of economic devel-
opment, socioeconomic and political systems, that is, related to human decision-
making processes.
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Such factors can be built into existing models and underlying theories. For
instance, the differential urbanization model links the processes of urbanization/
concentration, polarization reversal, and counterurbanization across the develop-
ment continuum within developed and developing countries [e.g., Botswana (Gwebu,
2006), Italy (Bonifazi and Heins, 2003)], mainly using migration statistics to under-
stand the processes. Both sociodemographic and environmental factors are used by
Henry et al. (2003) to explain migration processes. Linear extrapolation of a trend
combined with land use suitability based on physical properties, operational policies,
relations to nearby land use functions, and expert judgment can be used to simulate
the future (Schotten et al., 2001). Multiagent modeling at the household level is used
to understand patterns (Loibl et al., 2007) or to represent the behavior of the different
actors (Ettema et al., 2007). Hybrid models including cellular automata and dynamic
spatial simulation modeling have been developed to understand spatial dynamics
at different levels (Engelen et al., 2007; Piyathamrongchai and Batty, 2007). The
impact of temporal dynamics on urban growth has been studied by using modified
Markov random field and probabilistic cellular automata (Liu and Andersson, 2004).
The Conversion of Land Use and its Effects (CLUE) modeling framework is a tool
to better understand the processes that determine the spatial pattern of land use
(Verburg et al., 2002; Verburg and Overmars, 2007).

Such modeling efforts are limited in the link between human settlement patterns
and change processes resulting from planning, policy, and decision making. Few
models, such as the Land Use Scanner and Environment Explorer, include policy-
related parameters (Pontius et al., 2008). This link is necessary if one wants to
understand the “why”” and “how” of human settlement developments. Spatial pattern
refers to the spatially explicit changes in human settlement areas, whereas process
refers to the underlying drivers and proximate causes that explain these changes
(Geist and Lambin, 2001; Overmars, 2006).

The international scientific community is also interested in human settlement
areas. The Global Land Project (GLP), a multidisciplinary project of the International
Geosphere-Biosphere Programme (IGBP) and the International Human Dimensions
Programme on Global Environmental Change, aims “to measure, model and under-
stand the coupled human-environmental system’ and asks specifically for character-
ization of human settlement areas (GLP, 2005, p. 54).

If human settlement areas are to be characterized in a consistent manner, then
it should be clear to the data producer (the generator of datasets), the distributor
(the subsequent distribution of datasets), and user (in the end the user of datasets)
that the primary aim is not the static mapping of the areas to know their location
and extent, that is, land cover, but that the primary aim is change analysis, moni-
toring, and modeling to predict future land use developments under existing spa-
tial plans and policies, and to compare alternative planning and policy scenarios
in terms of their effects on future land use development. Thus, considering that
for policy and decision making the national and municipal levels are important,
the latter aims are also the key levels for characterization and, subsequently, for
data collection.

In recent years, the semantic contents of environmental change data have been
receiving increasing attention. Measuring semantic similarity of categories, either
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before or after data collection or between existing datasets, is an emerging area
of research (Ahlqvist, 2005). There are various initiatives dealing with the chang-
ing context of access to spatial data (e.g., Spatial Data Infrastructures such as the
European Union INSPIRE project), and there is recognition that spatial data inte-
gration is an essential step in environmental change monitoring and modeling and
initiatives that aim to respond to environmental change (Comber et al., 2005a). Data
users are becoming increasingly interested in understanding the wider meaning of
data, that is, the concepts adopted and categorizations used. However, current meta-
data standards convey very little about the semantic contents of class sets (Comber
et al., 2005b; Schuurman and Leszczynski, 2006). Similarly, remotely sensed data—
derived products report technical aspects of the data (e.g., scale, spatial resolution,
positional and thematic accuracy) but the semantic aspects are often largely ignored
(Comber et al., 2005¢).

This chapter will first explore the semantic aspects of land use and land cover
categorization (Section 12.2), followed by an analysis of the influence of semantics
on change analysis, monitoring, and modeling (Section 12.3), and a discussion of the
semantic differences between land use and land cover (Section 12.4). The chapter
next takes a side step in order to highlight some aspects of characterization using
remote sensing as a tool, as that is particularly appropriate in the context of this book
(Section 12.5). The main theme will be continued in the examination of ways to
include semantics in metadata standards (Section 12.6) and approaches for semantic
characterization, that is, standardization and harmonization, are analyzed (Section
12.7). Suggestions are made for the way forward (Section 12.8).

12.2 SEMANTIC ASPECTS OF CATEGORIZATION

Because different applications have different worldviews and semantics, interop-
erability can be primarily understood as a semantic modeling problem (Bishr
et al., 1999). The variation in the semantic content of data expressed as differ-
ences in categorization has received limited attention until recently (Feng and
Flewelling, 2004). Comber et al. (2004a) report that differences in semantic
concepts are often the major barrier to data integration. Achieving semantic
interoperability in order to use existing datasets at a satisfactory level has there-
fore become a key issue.

Categorization produces datasets comprising classes that have different seman-
tic contents (e.g., class labels and class definitions). Categorization, or classifica-
tion, is defined as “the ordering or arrangement of objects into groups or sets on
the basis of relationships. These relationships can be based upon observable or
inferred properties” (Sokal, 1974). An earlier definition by Shapiro (1959) viewed
categorization as “the sorting of a set of phenomena composed of generally-alike
units into classes or kinds, each class or kind consisting of members having defin-
able characteristics in common.” Sokal’s definition clearly underlines the issue
of relationships, whereas Shapiro’s definition uses the word “phenomena” instead
of “objects.” The term “phenomenon” would better suit land use than the term
“object.” However, Sokal’s definition will be adhered to here, as it is the most
widely applied definition.
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Classes are the results of a categorization process and they serve as the tangible
vehicles for communication of meaning (Ahlqvist, 2008). Anyone using classes
of a certain categorization will have to interpret these classes and may therefore
introduce bias (Jansen et al., 2008). Clear definition of all elements that make up a
categorization is therefore crucial. The primary aim of categorization is often to cre-
ate order for the communication of knowledge, but often includes ambiguity in both
concepts and definitions.

Categorizations embody a worldview. Data collected with a specific categoriza-
tion are intended for a certain purpose and this leads to a particular or prevalent
view. From the analysis of semantic information and used definitions, one can
deduce something about this view and the intent of the data producers. In the land
cover domain, for instance, the class definitions of “Continuous urban fabric”
and “Discontinuous urban fabric” in the CORINE Land Cover (CLC) categoriza-
tion (CEC, 1999; Bossard et al., 2000) is described by taking a map view, or two-
dimensional view, and only the word “structure” in the definition implies a third
dimension. In the Land Cover Classification System (LCCS) (FAO, 2005), that the
category name “Artificial surfaces and associated areas” is described by the param-
eter “Surface aspect” says enough. Both CLC and LCCS take a map view rather than
a geographic entity view.

Definitions are the main, and usually the only, descriptions of category terms,
because other elements that could contribute to the semantic definition of catego-
ries (e.g., the parameters or criteria used) are often missing. Definitions expressed
in natural language associated by subtype/supertype relationships are called fermi-
nological ontologies (Sowa, 2000). Almost all land use and land cover categoriza-
tions to date are terminological ontologies. Ontology is an explicit specification of a
conceptualization to represent shared knowledge (Gruebler, 1994; Ahlqvist, 2008).
Semantic information can be determined from the definitions of the ontology, and the
representation of categories can be enriched with semantic properties (e.g., purpose,
time, location, etc.) and relations (e.g., “is-a,” “is-a-part-of,” “associated-with,” etc.) in
order to reveal similarities and heterogeneities (Kavouras et al., 2005). Subsequently,
(dis)similarities can be visualized (e.g., Kavouras et al., 2005; Ahlqvist, 2007). With
the progress in computer and information sciences, there seems to be a real need to
improve existing categorization concepts and the operational use of such categori-
zations, in particular when comparing different categorizations in change analysis,
monitoring, or modeling efforts.

12.3 INFLUENCE OF SEMANTICS ON CHANGE
ANALYSIS, MONITORING, AND MODELING

In change analysis, monitoring and modeling the semantics often form a problem due
to the limited description of how exactly class labels should be understood (Comber
et al., 2004a) and expert opinions differ (Comber et al., 2005a). Moreover, datasets
from the same area but from different times often need to be integrated in a geoda-
tabase while at the same time each is based on a (slightly) different categorization
(Comber et al., 2004b). Similarity in terms does not necessarily imply equivalent
category terms.

© 2009 by Taylor & Francis Group, LLC



256 Human Settlement: Experiences, Datasets and Prospects

If one looks at change analysis and monitoring from the semantic perspective,
then one can observe that it is often performed in a rather straightforward man-
ner by constructing a change matrix for spatially explicit evaluation of changes.
This approach is based on standard set theory in which the crisp class A has either
changed in another crisp class or crisp class A remained unchanged. Changes of
crisp class A into crisp class B or into crisp class C are treated in an identical manner,
although one change type may relate to a conversion and the other to a modification.
A conversion means large semantic differences between classes (e.g., change from
pasture into residential area), whereas modification means small semantic differ-
ences (e.g., change from low-density residential area into a high-density residential
area). A more detailed approach has been used in the EU PHARE Land Use Policy
project in Albania, where not only changes were identified as either conversions
between land use categories or modifications within a land use category, but the
categorization hierarchy was also used to distinguish for each type of modification
three levels of intensity (Jansen et al., 2007).

Another approach to change analysis uses probabilistic reasoning (Haenni, 2005)
instead of standard set theory, although this approach considers the classes still as
being crisp and unambiguous. A more sophisticated approach is to consider the
notion of vagueness in the categorization system using fuzzy set theory. The notion
of category semantics and category similarity metrics (e.g., overlap and distance) is
concerned with the vagueness inherent in category definitions and semantic relations
between categories (Ahlgvist, 2007), thereby overcoming the traditional limitations on
the exhaustiveness and mutually exclusivity of classes (Rocchini and Ricotta, 2007).

The interpretation of a change matrix under the assumption of fuzzy catego-
ries will differ from the standard one, where diagonal elements hold instances of
“no change” and off diagonal elements hold instances of category gains and losses
(Fisher et al., 2006; Pontius and Cheuk, 2006). The diagonal can no longer be
treated as holding instances of “no change” and the use of category semantics and
category similarity metrics should be considered. Ahlqvist (2007) provides an inter-
esting example of such an approach in which not only a spatially explicit evaluation
of changes is given, but also a nuanced assessment on changes of heterogeneous
class types.

Much of the integration of knowledge on land use change takes place through
(spatial) models that aim at explaining the causes, locations, consequences, and tra-
jectories of land use change (Verburg and Veldkamp, 2005). Models, like categoriza-
tions, simplify the complexity of the reality. The two main sets of drivers (social and
biophysical) each seem to play a prevalent role at a specific scale: social drivers are
associated with finer-scale spatial patterns and biophysical drivers with coarser-scale
spatial patterns. As a result, two complementary modeling approaches are advo-
cated: from pattern-to-process (top-down) and from process-to-pattern (bottom-up)
(Walsh et al., 1999; Laney, 2004; Castella et al., 2007; Castella and Verburg, 2007;
Overmars et al., 2007). The above also means that land use and land cover operate
at different scales, a cause that affects their interoperability. Modeling efforts in
which pattern and process in human settlement areas are linked are limited. Even
more limited are research efforts in which the influence of semantics on modeling
outcomes is examined. Much more research should be undertaken in this area.
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12.4 SEMANTIC DIFFERENCES BETWEEN LAND USE
AND LAND COVER CLASS AND DATASETS

The ambiguity and heterogeneities of land use terminology were already signaled
in the 1950s (Mitchell and Rapkin, 1954, cited in Guttenberg, 2002). Land use is
defined as “the type of human activity taking place at or near the surface” (Cihlar
and Jansen, 2001), whereas land cover is defined as “the observed (bio)physical cover
on the Earth’s surface” (Di Gregorio and Jansen, 2000).

Although land use and land cover are often amalgamated in class and datasets,
there are three major semantic differences that affect their interoperability (Brown
and Duh, 2004):

* The category definitions of land cover and land use are different. In land
use terminology, an “undeveloped forest” is a clear-cut area that continues
to be used for forestry (Lund, 1999), whereas in land cover terminology the
term “forest” would not be used for an area without trees.

e Land cover and land use have different geometric expressions. The conse-
quence is that a categorization cross-walk approach to semantic interop-
erability without defining interrelations between categorization schemes
and without redefining spatial objects, such as proposed and implemented
for alternative vegetation/land cover classifications by the IGBP (Loveland
et al., 2000), is likely to be an inadequate solution for the proper translation
between land use and land cover. As Cihlar and Jansen (2001) pointed out,
the spatial objects might need to change in addition to the class definitions.

e Land cover and land use have different spatial rules to assign attributes
to land use/land cover features because land-use class definitions tend to
integrate information about activities taking place within a spatial unit
(e.g., cadastral parcel or zone), whereas land cover class definitions assess
the static and in situ conditions. Thus, the entities of a land cover data set
(e.g., polygons) usually show more spatial variation than those of a spatially
explicit land use data set (assuming both datasets are compiled based on
sources of the same level of detail).

Cihlar and Jansen (2001) pointed out the complexity of the relationships
between land use and land cover class and datasets. They developed a framework
for analysis of the land cover/land use relationships, arguing that these relation-
ships should always be considered from a spatial and semantically consistency
viewpoint at a certain point in time, because the relationship may change over time
in the domain of interest and vary between different domains of interest. Thus,
there are no preset relationships between land cover and land use that could form
a basis for building linkages between a priori categorization systems, that is, cat-
egorization systems comprising sets of predefined classes (e.g., CLC and LCCS). It
is clear that class and datasets in which land use and land cover are amalgamated
further complicate matters.

From the semantic differences listed above and the fact that land use and land
cover operate at different scales (Section 12.3), it should be clear that attempts to
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link land use to land cover categorization “to base a common system for land-use
classification on existing land-cover standards to ensure full compatibility” and
“land-cover and land-use transitions have to be interoperable” (Herold et al., 2006, p.
162) are conceptually wrong from the spatial, temporal, and semantic perspectives.

12.5 REMOTE SENSING AND CLASSIFICATION

Another reason for the renewed interest in the complex dynamics of urban systems
may be the increasing availability of (very) high spatial resolution satellite sen-
sor data. Satellite images give a physical description of the Earth’s surface (e.g.,
materials, surface roughness, and structure) related to land cover. Land use needs
to be inferred from image characteristics or through the incorporation of ancillary
information. Figure 12.1 gives an example of the hierarchical ordering of urban
surface cover types that can be detected with remote sensing with a map view (see
Section 12.2).

The term “classification” as used in remote sensing means something different
from the categorization discussed in previous paragraphs. The term “categorization”
embodies two meanings (Duhamel, 1998): (1) establishment of groupings of all
objects in a given field (according to Sokal’s definition); and (2) using the established
groupings in order to decide the membership status of other objects. The second
meaning is used in remote sensing where the imagery is used for the identification
process of objects.

Research themes evident today in human settlement remote sensing can be
divided into: (1) improving techniques for classifying images or (2) understanding
the human settlement environment with interpreted scenes (Wentz et al., 2006). The
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FIGURE 12.1 Hierarchical ordering of urban surface cover types. (Adapted from Roessner
et al., 2001).
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first is dealt with in numerous publications (e.g., Herold et al., 2004; Jacquin et al.,
2007; Heiden et al., 2007, to cite a few). The relationship between human settlement
land uses and spectral responses recorded in such images is very complex and indi-
rect, excluding the use of traditional remote sensing classification approaches. Land
use functions may be distinguished on the basis of the differences in spatial distribu-
tion and pattern of land cover forms using advanced software with object-oriented
fuzzy-rule (fuzzy logic) classification techniques (Bauer and Steinnocher, 2001). The
philosophy behind such software is that important semantic information necessary
to interpret an image accurately is not represented in single pixels, but in meaningful
image objects and their mutual relationships. However, in both research themes the
understanding of the spatial patterns and the underlying processes and the role of
semantics in such analyses is absent.

Human settlement characterization is fundamentally different from remotely
sensed based classification. The parameters used in the latter do not (necessar-
ily) coincide with the first. Characterization with remote sensing, that is, a tool, is
dependent on the type of image used, its spectral and spatial characteristics. Tool
dependence is against the principles of categorization (Duhamel, 1998; Di Gregorio
and Jansen, 2000; EC, 2001; Jansen, 2006). Furthermore, if remote sensing is used
to detect land use based on land cover, then the relationships between human settle-
ment land cover and land use need to be established for the area of interest, and
where the relationship is not consistent in either space or time ancillary data need
to be used to establish this relationship (Cihlar and Jansen, 2001). In a time-series
analysis, this means that the land cover/land use relationship needs to be established
for each moment in time. This is not a trivial matter in an environment as dynamic
as human settlements.

Although the contribution of remote sensing to the characterization of urban set-
tlement areas may be limited, it is a useful contribution. Taking into account that
human settlement areas cover only 2% of the Earth’s surface, intensive urban “field”
survey campaigns for verification and validation of remotely sensed derived inter-
pretations do not involve travel over large distances and difficult terrain, such as are
generally encountered by rural field survey campaigns. Collection of especially land
use—related information on the ground should therefore not be a major obstacle to
enrich land cover interpretations.

12.6 SEMANTICS AND METADATA

Data are collected for an intended purpose and this leads to a particular or prevalent
view (Section 12.2). Related to this view is the meaning of the data. The latter may
be obvious to the data producer, but it is rarely as clear to the distributor and data
users unless they were part of the data collection process. Access to data through
Spatial Data Infrastructures initiatives implies that countless potential users may be
reached. However, in almost all cases to date, the metadata do not provoke users to
consider the wider meaning of the data (Comber et al., 2004a).

Recognition of semantic heterogeneity is the basis for creating sound data linkages
between multiple datasets that are needed for planning, policy, and decision mak-
ing. Metadata are an existing means for conveying ontological information about the
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semantic contents of data. Currently, however, fields to express semantic information
are lacking and only information of the technical and geometric domain is included.
Schuurman and Leszczynski (2006) present an example of how ontological informa-
tion can be linked with metadata as a means of providing deep meaning and context
to both semantic and numeric metadata. Current ontology research in geographic
information science has focused on data structuring and modeling. Implementation
of these schemes demands restructuring of existing relational database models. An
alternative is to extend current metadata schemes (e.g., ISO 19115) to include context-
based and tacit information about semantic attributes. Such ontology-based extended
metadata permits data selection and interoperability decisions that are ultimately
more justifiable.

The current trend is to incorporate ontological context at the model level in
geographic information science. The development of ontology-based metadata, as
described above, is very much a different issue. It is pragmatic, however, in that it
presents a means for incorporating use context with data in a manner that is acces-
sible, requires little reengineering, and is intuitively understood by geographic infor-
mation system users (Schuurman and Leszczynski, 2006).

12.7 APPROACHES FOR SEMANTIC CHARACTERIZATION:
STANDARDIZATION AND HARMONIZATION

Semantic interoperability goes beyond attempts to homogenize differences through
standards (Harvey et al., 1999). Although standards in themselves are useful, because
they provide a “common language,” they usually lag behind activity and therefore
cannot represent the depth of knowledge held within a community (Comber et al.,
2005b). Standards also change over time, so they are not so “standard” as their name
seems to suggest. Table 12.1 shows, for instance, differences between the third and
fourth revisions in the main categories of the International Standard Classification
of all Economic Activities (ISIC) (UN, 1989, 2006). Such changes do not only affect
the class set but also the data set behind it, and thus may mean difficulties when try-
ing to establish correspondence between categories and classes as this is no longer of
the type one-to-one. To give some examples of changes:

e The third revision category of “A. Agriculture, hunting, and forestry” is no
longer compatible with the fourth revision category “A. Agriculture, for-
estry, and fishing” even when one would include “B. Fisheries,” because the
latter is not fully compatible with “A-03 Fishing and aquaculture.”

e The category “E. Electricity, gas, and water supply” (third revision) has
been extended to “D. Electricity, gas, steam, and air conditioning supply”
(fourth revision) and water supply has its own class “E. Water supply; sew-
erage, waste management, and remediation activities.”

Adoption of a standard implies adoption of a particular worldview embodied in
the data. This becomes a critical issue because a world in which several worldviews
coexist seems not only a much more flexible approach suited to the intended purpose
of data collection, but also one that makes the world richer (Jansen et al., 2008).
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TABLE 12.1
Main Categories of ISIC — Third Revision and Draft for the Fourth Revision

Code
A

—

—

o

International Standard Classification of All Economic Activities

Third Revision (UN, 1989)
Agriculture, hunting, and forestry
A-01 Agriculture, hunting, and related

service activities

A-02 Forestry, logging, and related
service activities

Fisheries
Mining and quarrying
Manufacturing

Electricity, gas, and water supply

Construction
Wholesale and retail trade

Hotels and restaurants
Transport, storage, and communication

Financial intermediation

Real estate, renting, and business
activities

Public administration and defense

Education

Health and social work

Other community, social, and personal
service activities

Private households with employed
persons

Extraterritorial organizations and
bodies

Code

A

= w»

Fourth Revision (Draft) (UN, 2006)

Agriculture, forestry, and fishing

A-01 Crop and animal
production, hunting, and
related service activities

A-02 Forestry and logging

A-03 Fishing and aquaculture

Mining and Quarrying

Manufacturing

Electricity, gas, steam, and air
conditioning supply

Water supply; sewerage, waste
management, and remediation
activities

Construction

Wholesale and retail trade; repair of
motor vehicles and motorcycles

Transportation and storage

Accommodation and food service
activities

Information and communication

Financial and insurance activities

Real estate activities

Professional, scientific, and technical
activities

Administrative and support service
activities

Public administration and defense;
compulsory social security

Education

Human health and social work
activities

Arts, entertainment, and recreation

Other service activities

Activities of households as employers;
undifferentiated goods- and
services-producing activities of
households for own use

Activities of extraterritorial
organizations and bodies
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Do we need to standardize the characterization of human settlement areas, or
is “Should we invest in better ways to harmonize?” the key question to be raised?
Standardization takes categorization one step further in that it fixes a categoriza-
tion (Ahlgvist, 2008). Standardization defined as “the use of a single standard basis
for classification of a specific subject” (McConnell and Moran, 2001) assumes that
the advances in knowledge, technological developments, and changing policy objec-
tives would not have an impact on the existing systematic categorization framework.
Lessons from the past impart the message that this may be an unrealistic expecta-
tion, so data standardization seems to be only partly feasible (Jansen et al., 2008).
As Cihlar and Jansen (2001), Comber et al. (2005b, 2007), and Ahlqvist (2008) point
out, manifold ways to conceptualize and communicate knowledge exist according to
the perspective of (groups of) experts, professions, etc., so that there are necessar-
ily many-to-many relationships between classes and thus inherent ambiguity in any
categorization. Categorizations and standardizations contribute to communication of
knowledge and in making joint progress in that, knowledge by facilitating communi-
cation. However, they can only make such contributions by being dynamic in nature.
The latter means that no formalization of categorization should be sought.

Harmonization of categorization systems defined as “the intercomparison of
data collected or organized using different classifications dealing with the same
subject matter” (McConnell and Moran, 2001) seems a more realistic avenue for
future applications as the emphasis is shifting from static mapping toward more
dynamic monitoring and modeling (Lambin et al., 2000; McConnell and Moran,
2001; Dolman et al., 2003).

12.8 THE WAY FORWARD

Semantics should contribute not just to the static mapping of areas to know the
location and extent, but especially to the dynamics of changes. Concentrating too
much on “mapping” is limiting oneself to a type of snapshot of a specific moment in
time with a specific categorization. Understanding the dynamics of changes requests
much more of semantics than mapping.

If human settlement areas are to be characterized semantically in a consistent
manner, it should be clear that communication between the generator of datasets,
the data distributor, and in the end the user of datasets is crucial. One should be
able to retrieve the meaning of the semantics used and the context in which they
are used. Categorizations could be improved by taking a parameterized approach
in which the class labels are accompanied by a clear and unambiguous description
and the parameters used in the definition of classes are explicitly mentioned and well
defined. But there is also a need for rich narratives that further specify and clarify
what is included in a term, a class, or categorization. Such parameterized categoriza-
tions would contribute to the harmonization of semantics. At present, there is often
no explicit recognition of semantic differences in cases where two or more different
categorizations are involved. Extended metadata, comprising information on seman-
tics, would also be a major improvement.

Land use and land cover are closely linked, however they are not identical and
should not be amalgamated in categorizations. The temporal, spatial, and semantic
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perspectives of land use and land cover are different and attempts to link them in
categorization should be abandoned.

The way forward is the development of systematic approaches for data harmoni-
zation that also provide quantitative measures for the harmonization results both at
individual class level as between two categorizations. The latter is not the subject of
this paper (see Jansen et al., 2008), but the capability to measure and compare simi-
larity between categorizations and classes within a categorization system or between
categorization systems is becoming increasingly important, not only as part of a
categorization or interpretation process, but especially in change analysis, monitor-
ing, and modeling. The harmonization of semantics is only one aspect of data har-
monization, sitting alongside the adopted data concepts, the spatial, temporal, and
data quality aspects. Data harmonization will allow the continued use of different
categorizations, each with its own worldview and particular purpose. These differ-
ent categorizations enrich the understanding of our environment by taking different
perspectives.

More information on the semantics of land use and land cover categorizations is
needed to enable us to make better and informed use of existing class and datasets.
However, the interoperability between land use and land cover will not be enhanced
with such information although the insight into the limitations of such interoperabil-
ity will become more apparent.
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examples of such algorithms. These algorithms are increasingly used in projecting
current urbanization trends into the future. In general, these forecasting algorithms
capture the growth of a city by learning how the city had grown based on satellite
sensor images. It is thus important that growth patterns be correctly mapped both in
space and time to provide a reliable basis for forecasting.

16.4 CURRENT METHODS FOR HIGH TEMPORAL
RESOLUTION DATA ANALYSIS

The remote sensing literature is rich with change detection methods (Singh, 1989; Lu
et al. 2004). These techniques include image regression, image subtraction, postclas-
sification comparison, multidate principal components analysis, multidate tasseled
cap transformation, change vector analysis, and neural networks (Fung, 1990;
Lambin and Strahler, 1994; Collins and Woodcock, 1994; Gopal and Woodcock,
1996; Dai and Khorram, 1999). Numerous methods have been developed because
of the variation in the types of study areas, the types of land cover changes being
mapped, and the temporal and spatial resolution of the data. In turn, the variation in
applications, study areas, and data constraints means that there is no such thing as a
“best” technique.

Most change detection studies evaluate change between two periods (Howarth
and Boasson, 1983; Green et al., 1994; Kwarteng and Chavez, 1998; Mas, 1999).
Although studies that use more than two dates of imagery exist (Jensen et al., 1995;
Pax Lenney et al., 1996; Collins and Woodcock, 1996), most do not use consecutive
dates, nor do they extract annual estimates of land use or land cover. Furthermore,
analyses that use more than two images are largely limited to AVHRR data (Eastman
and Fulk, 1993; Barbosa et al., 1999; Lambin, 1996). Few methods have been devel-
oped or adapted for high temporal resolution data. A survey of the literature reveals
that there are fewer than one dozen studies where the algorithm was developed for
the purpose of high temporal frequency mapping (Kaufmann and Seto, 2001; Pan
and Zhao, 2007; Xu et al., 2007).

The success of pixelwise change detection method is, first of all, a function of
the quality of the registration (Townshend et al., 1992; Dai and Khorram, 1998).
Coregistration of very long time series is difficult and can be an impediment to even
the best multitemporal method. One cannot expect high accuracy of the results if the
geographical location of pixels across the images is not reliable.

16.4.1 PosTPROCESSING OF CLASSIFIED IMAGES

The simplest change detection method classifies each image independently; changes
are then identified by comparing the classified images. This is by far the least com-
plex and most widely used change detection method. Although each map taken indi-
vidually may be accurate, there is no guarantee that the time series will be well
classified. The problem lies in the compounding of the errors across time. The time
series accuracy is approximately the product of accuracy associated with each indi-
vidually classified map (Singh, 1989). For example, a series of seven classified maps,
each with an overall accuracy of 80%, may have a time series accuracy of 0.87, or
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20% under the assumption of uncorrelated classification errors across time or space.
Thus, a good single time classification on each map is no guarantee of an accurate
time series.

16.4.2 CLASSIFICATION OF TRAJECTORIES

A second change detection method consists of analyzing the stacked images concur-
rently and classifying the class trajectories (Singh, 1989). For example, instead of
classifying a pixel as urban or agriculture, all the possible transitions between those
classes (urban to urban, urban to agriculture, agriculture to urban, and agriculture
to agriculture) are considered. The drawback of this method is that all pixel trajec-
tories in time must be exhaustively stated before the classification. Furthermore, it
requires having training data representing all these transitions. This technique is
efficient and generates good accuracy when the time series is relatively short and
contains few possible transitions. However, a long time series or the inclusion of
just a few additional land cover classes can generate far too many possibilities to
be manageable.

16.4.3 EcoNoMETRICS TIME SERIES

A third method models every pixel as a time series, where the time of change is
estimated. For example, Kaufmann and Seto (2001) use time series econometrics to
detect dates of change with better results than when the changes are obtained from
postprocessing independently classified images. The method is efficient in finding
the date of change on long time series but does not address which land cover types
were involved in the changes.

16.4.4 THe CASCADE APPROACH

The cascade approach features a good balance between ease of use and performance
in classifying long time series (Swain, 1978). It consists of sequentially classifying
the land cover classes, usually in a chronological order. Past classifications are used
to condition future classifications. The link between land cover at different times
is parameterized with transition probabilities. The main drawback of doing the
classification chronologically is that the accuracy will decrease as the time series
increases. Moreover, if the first pixel is not well classified, the remaining portion
of the time series, being conditioned to that misclassified pixel, is also likely to be
misclassified.

Instead of a classical chronological classification, one can start by classifying
the image that contains the most information relative to other images in the series.
By first identifying this image, rather than the first image in the series, these high
confidence classifications can be used to better classify the data in other periods
where classification is more uncertain (Boucher et al., 2006). The image with the best
information can be found with some information content metrics such as entropy.
Thus, adding images with high information content to a time series can increase the
mapping accuracy by constraining the images carrying less information.
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The integration of satellite sensor data at different times is done with transition
probabilities. The transition probability between land cover A and land cover B is
the probability that a pixel will change from A to B within a defined period. The
probability that no change occurred is the transition probability between land cover
A and A or B and B. If there are L land cover types, then there are L? transition prob-
abilities. It is misleading to assume that the transition probabilities are extra infor-
mation that is not needed with the previous techniques; in fact, it can be shown that
postprocessing independently classified images is equivalent of setting the transition
probability from A to B to the global proportion of B. Not explicitly choosing a set of
transition probabilities is simply equivalent to choosing an implicit, and likely incor-
rect, set of transition probabilities. Bruzzone and Serpico (1997) provide a technique
for estimating these transition probabilities.

The cascade approach is the most scalable method for long time series. The
algorithm complexity increases approximately linearly with the length of the time
series. Furthermore, it does not require radiometric corrections or that the ground
truth be colocated as required by the trajectory methods. It does, however, require the
additional effort of obtaining the transition probability for any land cover to change
into any other land cover in one time step. Ideally, each remote sensing image should
have been taken at regular intervals, say every year in December. The transition
probability matrix must be adjusted if the images are distributed irregularly in time.

A more rigorous approach would be to jointly classify all the dates through an
iterative method such as expectation-maximization; such an iterative approach would
be prohibitively and computationally costly for long time series and large images.

16.4.5 Issues oF SpATIAL RESOLUTION

The techniques discussed above assumed that the images have the same spatial res-
olution. This may not always be the case. For example, combining Landsat MSS
with Landsat Thematic Mapper imagery has the additional challenges of integrat-
ing images with different radiometric and spatial resolution. Newer sensors provide
spatial resolution that is finer than existing sensors. Combining images from sensors
with different spatial resolution pose additional challenges that will be increasingly
relevant if we wish to take advantage of the available information. At this point, one
can either adjust the spatial scale of the images by upscaling or downscaling so that
they will share the same spatial resolution.

16.5 ACCURACY ASSESSMENT OF HIGH
TEMPORAL RESOLUTION TIME SERIES

A classified map is only useful if associated with an accuracy assessment. Moreover,
that accuracy assessment must target the mapping objectives. Most change detection
studies address issues of accuracy, but few address the issue of accuracy through time.
In addition to cross-sectional accuracy, such as the confusion matrix and the kappa
coefficient, the classification of land covers over time must also be accurate. The tempo-
ral component becomes as important as the spatial component when it is necessary to
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know both when and where changes have occurred. Classifying a time series of remote
sensing images differs from classifying each image independently. Independently
classifying each image provides an accurate mapping of the urban area at each time,
that is, cross-sectional accuracy. It may provide reasonable estimates of the rates of
overall growth between two periods. It will not, however, provide an accurate temporal
pattern of growth, that is, where, when, and how the changes occurred. The reader is
referred to Biging et al. (1999) for a perspective on accuracy for change detection.

Ideally, a time series of georeferenced ground truth data would exist for each pixel
in the training data set. Having enough of these fully known time series greatly eases
the validation of the temporal mapping. Take the example of mapping five land cov-
ers (e.g., water, vegetation, agriculture, urban, and transition) over 8 years, from 1988
to 1996, in the Pearl River Delta, China. Figure 16.2 shows the accuracy of the time
series as a function of its length; the accuracy assessment is performed on more than
2000 known time series with a fivefold cross-validation. The solid and the dashed
lines are obtained with the cascade approach, whereas the gray line is obtained by
classifying each image independently. Two measures of accuracy are displayed; the
first one is the accuracy in mapping change. In this case, a time series is considered
to be well classified if the dates of change have been correctly identified. The land
covers involved in the change are not considered at this point. A second accuracy
metric, also shown in Figure 16.2 (right), considers a time series well classified only
if all the land cover types have been correctly identified for all points in time. This
measures the type of land cover change — change from what to what land cover
classes — as well as when the change occurred. This is a more stringent accuracy
metric, but it is also more relevant when linking changes in land covers with socio-
economic policies.

As the length of the time series increases, the accuracy generally decreases. The
rate of decrease is higher when the images are independently classified (shown by
the gray line) than when the cascade approach is used (shown by the solid and dashed
lines). For the cascade approach, accuracy is also a function of the sequencing. For
instance, classifying the most informed pixels first (solid line) delivers a higher
accuracy than doing a chronological classification (dashed line). Using temporal
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FIGURE 16.2 Computed accuracy for increasing length of time series for five land cov-
ers with a cascade approach with information-based sequencing (solid line), a chronological
approach, and independently classified images (gray lines). Left: change/no change accuracy.
Right: full time-series accuracy.
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information — in this case, transition probabilities — increases the accuracy of a
long time series.

For a given length of a time series, a useful accuracy indicator is the percentage of time
series containing at least n consecutive pixels that are correctly classified. Consider the
examples in Figure 16.2 with a time series length of seven. The first point in Figure 16.3
shows the percentage of time series that have at least two consecutive times, out of
the seven, that are well classified. That same accuracy is computed for a consecutive
sequence of three, four, up to seven, which yields the same values as in Figure 16.2.

In the most difficult case, where the ground truth data are not georeferenced
through time, the validation of the time series becomes more difficult because there
are no data to compare the classification over time. In that case, one cannot obtain
a precise accuracy number. The issue of how to assess time series accuracy for long
time series and high temporal frequency data will require significant research, espe-
cially as the satellite record continues to lengthen. New metrics, albeit imperfect,
will be required that describes time series accuracy. One alternative is to search
and count how many impossible or very unlikely transitions, based from expert
knowledge, have been mapped (Liu and Zhou, 2004). For example, if it is impossible
for an urban land cover to change into a forest within 2 years, one can then scan the
classified maps searching for such a transition. If some are found, it is indicative
of some of the errors contained in the map. Tabulating such impossible transitions
would give the user a broad idea about its accuracy in mapping change patterns.

16.6 CONCLUSION

As the physical size and number of cities continue to grow, their impacts on the
environment will also increase. The questions and challenges generated by these
fast-growing cities required high-temporal resolution time series, and algorithms can
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FIGURE 16.3 Percentage of time series with at least n consecutive years that are
well-classified. The number of consecutive dates 7 is set to vary between 2 and 7.

© 2009 by Taylor & Francis Group, LLC



348 Human Settlement: Experiences, Datasets and Prospects

efficiently process these images. Learning what influenced the growth patterns and
linking urban growth with sociopolitical or economic events is essential in develop-
ing policies that will lead to more sustainable built places.

New methods for classifying and assessing these long time series are needed to
reduce the time and effort required in generating these high-temporal resolution
images. Most of the development about multitemporal mapping focuses on classi-
fying only two or three images when, in fact, many more are needed to link urban
growth with social and economics policies.
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13.1 INTRODUCTION

Before 2000, if one asked the question, “How much of the Earth is urban, and
where are these urban places located?” the only global map available was a digi-
tized mosaic of maps and charts from the 1960s through the 1990s [Digital Chart
of the World (DCW) or Vector Map Level Zero; Danko, 1992]. That landscape has
changed. International research groups from both government and academia have
produced eight global-scale urban maps and at least two global-scale urban-related
maps; three of these maps were released in early 2008. These new maps have been
made possible by the availability of global coarse-resolution (250 m—2 km) daytime
and nighttime satellite remote sensing observations, the worldwide collection of cen-
sus results and other urban-related map layers that are in a geographic information
system (GIS) format, and increases in computational power and the effectiveness of
semiautomated mapping techniques. The new methods and data sources offer, for
the first time, a planetary perspective on the spatial extent and distribution of urban
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land. Because this synoptic perspective is quite new and the community of map
users is diverse and expanding, it is important that we step back from the limited
perspective of individual mapping efforts and strengthen our understanding of the
similarities and differences among the suite of available global urban maps. The aim
of this chapter is to conduct that comparison by using a wide array of map agreement
measures across a range of spatial resolutions and geographic regions, providing
those who use these maps with the diagnostic tools to determine the map or set of
maps most suited to their application.

We begin this chapter by briefly summarizing the methodologies and underlying
source data for each of the eight existing global urban maps (Section 13.2). In part
because of the complexity of the label “urban,” there is a great deal of heterogeneity
in the approaches used by each research group. Next, we bring these maps into focus
by creating a common analysis environment and exploring each of the maps at three
scales: at the level of the city, the continental region, and the globe (Section 13.3).
We find evidence for a surprisingly high degree of difference across all world regions
and map resolutions. For example, these maps vary by an order of magnitude in their
estimates of the total extent of urban land, from 0.3 to 3.5 million km? (Figure 13.1).
In the following section, we explore the structure underlying these bulk differences
by making all of the 28 possible intermap comparisons (Section 13.4). We use three
different approaches to measuring map agreement: (1) pixel-by-pixel comparisons,
(2) national-level comparisons of urban extent, and (3) multiresolution comparisons
of urban extent based on a global system of hexagonal cells. The intermap differ-
ences that we uncover in Sections 13.3 and 13.4 point toward the need for a common
urban taxonomy and a global map assessment based on medium- and high-resolution
validation data. In the final analytical section of this chapter, we present some early
results from an evaluation of the eight coarse-resolution global urban maps against
high-resolution Google Earth (GE) imagery and a set of 120 medium-resolution city
maps based on Landsat imagery (Section 13.5). We conclude with a summary of our
findings thus far, and a brief sketch of the road ahead (Section 13.6).

13.2 METHODOLOGIES BEHIND GLOBAL
URBAN MAPPING EFFORTS

Since 1990, there have been several attempts to estimate the total urban extent of
the Earth using national- and regional-scale tabular methods. The basic approach is
to combine urban population estimates from census data with regional estimates of
urban population density. Applying this technique to country-level urban population
estimates from the United Nations (UN) and urban density estimates from unnamed
sources, Douglas (1994) arrived at a global figure of 2.47 million km? of urban land
circa 1985. Griibler (1990) used similar global values on urban populations in com-
bination with a small collection of city-scale studies on the built environment to
estimate a global total of 1.3 million km? for urban area circa 1990. Angel et al.
(2005) used satellite imagery and census data to calculate regional urban popula-
tion densities, and combined these densities with a global dataset of city populations
circa 2000 to arrive at an estimate of approximately 400,000 km? for urban land
within cities of 100,000 people or more.
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FIGURE 13.1 Global extents for eight spatially explicit estimates of urban area (thousands
of km?): Vector Map Level Zero, Global Land Cover 2000 v1.1, GlobCover, History Database
of the Global Environment v3, Nighttime Lights—based Global Impervious Surface Area
beta product, Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m Urban Land
Cover v5 2001, MODIS 1 km Urban Land Cover v4 2001, and Columbia University’s Global
Rural-Urban Mapping Project version alpha. Above each bar is the estimate of global extent
in thousands of km?. The dotted line is an estimate of urban area based on national-level
urban statistics (UN Population Division 2005) and regional-level urban population densities
for the year 2000 (Angel et al. (2005). Note the order of magnitude difference for these are 8
totals. (From Potere, D. and Schneider, A. GeoJournal, 69: 55-80, 2007. With permission.)

The first attempt to build a global land cover map based on satellite observa-
tions began with the Global Land Cover Characteristics (GLCC) database, a joint
effort between the United States Geological Survey (USGS) and the European Joint
Research Center (JRC), based on one year (1992—-1993) of observations from the
National Aeronautics and Space Administration (NASA) Advanced Very High
Resolution Radiometer (AVHRR) instrument (Loveland et al., 2000). Because the
vegetation indices used by GLCC are not particularly well suited to classifying
nonvegetated areas, the GLCC group chose not to map urban areas (Loveland et al.,
2000). Instead, GLCC rasterized the urban polygons from the DCW, which is a pub-
lic-release version of the Vector Map Level Zero (Danko, 1992). The same approach
was used by the University of Maryland (UMD) group in their global AVHRR-based
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land cover map (Hansen et al., 2000a). Both the GLCC and the UMD maps are not
included here; instead, we include VMAP level 0, which is the common data source
underlying their urban classes.

Table 13.1 describes the eight global urban maps and two urban-related maps
included in this chapter, together with the acronyms that will be used from this point
forward. They are arranged in order of increasing global urban extent (from left to
right in Figure 13.1 and top to bottom in Table 13.1), with the two urban-related maps
listed in the last two rows. Each of these maps approaches urban land from a unique
perspective (Table 13.2), using methodologies that draw on a sometimes-overlapping
pool of remote sensing imagery, ground-based census results and GIS data layers, and
other global maps. Three of these maps — Vector Map Level Zero (VMAPO), Global
Landcover 2000 (GLCO00), and GlobCover (GLOBC) — are general multiclass land
cover maps that include an urban class. Three are binary (presence/absence) maps
devoted entirely to urban land: Moderate Resolution Imaging Spectroradiometer
(MODIS) Urban Land Cover 1 km (MODIK), MODIS 500 m (MOD500), and Global
Rural-Urban Mapping Project (GRUMP).* Two maps, Global Impervious Surface
Area Map (IMPSA) and History Database of the Global Environment (HYDE3),
characterize urban land as a continuous variable: the fraction of impervious surface
and the fraction of urban land, respectively. The remaining two maps, LandScan
2005 (LSCAN) and Nighttime Lights (LITES), measure continuous variables closely
associated with urban land: the ambient human population (defined as the population
of a given area averaged over a 24-hour period) and the intensity of stable night-
time illumination, respectively. The majority of the maps are conducted at approxi-
mately 1-km spatial resolution, with the exception of HYDE3 (approximately 10 km),
MOD500 (approximately 500 m), and GLOBC (approximately 300 m).

These maps are beset by the problem of a consistent operational definition of urban
areas. Places that can be described as urban include: densely settled city cores, tree-
covered suburbs, slum neighborhoods, and the “urban villages” of sub-Saharan Africa.
There is no generally accepted set of criteria for creating a binary urban-rural classi-
fication. This challenge is not unique to the land cover mapping community; the UN
Population Division faces the same problem in their national-level census estimates of
urban populations. In a review of the UN’s statistics on urban populations, Utzinger
and Keiser (2006) point out that 228 member nations use at least 10 categories of urban
population classification, drawing on various combinations of population size and den-
sity, administrative boundaries, and economic activities. The map legends used by our
eight global urban maps reveal the same lack of consensus and precision regarding a
definition of the urban land category — for example, VM APO uses the term “built-up,”
GLCO00 and GLOBC make use of “artificial surfaces and associated areas,” MODI1K
and MODS500 use “urban and built-up,” and GRUMP uses “urban extent.” Although
not reflected in these simple legends, each of the eight global urban maps model urban
areas based on a complex matrix of attributes, including: (1) remotely sensed daytime

* Although both MODIS land cover maps include 17 land cover classes, the urban class is created in
a wholly independent process from the other 16 land cover categories (Schneider et al., 2003, 2005,
forthcoming).
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TABLE 13.1
The Eight Global Urban Maps Examined in this Research in Order of Increasing
Global Urban Extent, and the Two Urban-Related Maps (Last Two Codes)

Code
VMAPO

GLCO00

HYDE3

IMPSA

MODS500

MODI1K

GLOBC

GRUMP

LITES

LSCAN

Abbreviations:

Map/Paper

Vector Map Level
Zero (Danko, 1992)

Global Land Cover
2000 v1.1 (Bartholome
and Belward, 2005)

History Database of the
Global Environment
v3 (Goldewijk, 2005)

Global Impervious
Surface Area
(2000-2001) (Elvidge
et al., 2007)

MODIS Urban Land
Cover 500 m (2001v5)
(Schneider et al.,
forthcoming)

MODIS Urban Land
Cover 1 km (2001v4)
(Schneider et al., 2003,
2005)

GlobCover

Global Rural-Urban
Mapping Project, alpha

DMSP-OLS Nighttime
Lights v2 (2001, F15
sat.)

LandScan 2005

Producer

US National Geospatial-
Intelligence Agency
(Us)

European Commission
Joint Research Center
(EC-JRC)

Netherlands
Environmental
Assessment Agency

Earth Observation
Group, US National
Geophysical Data
Center (NGDC) (US
NOAA)

University of
Wisconsin and Boston
University (US
NASA)

Boston University
Department of
Geography (US
NASA)

EC-JRC

Earth Institute at
Columbia University
(US-UN)

NGDC (US NOAA)

US Oak Ridge National
Laboratory (US DOE)

Specifications/Source

Land cover and map features, vector,
1:1,000,000 scale, geographic
projection, (http://geoengine.nga.mil/)

Land cover, 22 classes, raster, 32”
arc-seconds (~1 km), geographic
projection, (http://www-gvm.jrc.it/
21c2000/)

Global fraction of urban land, raster,
5" arc-minutes (~10 km), geographic
projection, http://www.mnp.nl/hyde/

Global fraction of urban land, raster,
30” arc-seconds (~1 km), geographic
projection, (http://www.ngdc.noaa.
gov/dmsp/)

Global urban land, Raster, ~500 m
resolution sinusoidal projection
(http://www.sage.wisc.edu)

Global urban land, raster, ~1 km
resolution, sinusoidal projection
(http://www-modis.bu.edu/
landcover/)

Land cover, 22 classes raster, 10”
arc-seconds (~300 m), geographic
projection (http://ionial.esrin.esa.int/)

Urban/rural map, raster, 30”
arc-seconds (~1 km), geographic
projection, (http://sedac.ciesin.
columbia.edu/gpw/)

Nighttime illumination intensity,
raster, 30” arc-seconds (~1 km),
geographic projection, (http:/www.
ngdc.noaa.gov/dmsp/)

Ambient human population, raster,
30” arc-seconds (~1 km), geographic
projection, (http://www.ornl.gov/sci/
landscan/)

DOE, Department of Energy; DMSP-OLS, Defense Meteorological Satellite Program-

Operational Line Scanner; EC, European Commission; MODIS, Moderate Resolution
Imaging Spectroradiometer; NASA, National Aeronautics and Space Administration;
NOAA, National Oceanographic and Atmospheric Administration; UN, United Nations.
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TABLE 13.2
Major Inputs Used to Produce the Eight Global Urban Maps and LandScan
Primarily image-based c Map-based
MOD500 MOD1K GLOBC GLC00 IMPSA LSCAN HYDE3 GRUMP VMAPO
Imagery
High Res. Various®
Medium Res. Landsat  Landsat Landsat | Landsal® GeoCover®
MODIS MODIS MERIS SPOT4-
Coarse Res. 500m,'01 1km,'01 300m,‘'05 VGT 2001
Night Lights 1996.97 199495 | 2000-01° 1994.95
Census & Maps
Census us® UN' UN'
Maps / Charts X X X X X X
City Gazetters x X X
Road Vectors X x
Global Maps
VMAP level 0 level 19 level D level 0
MOD1K x
GLC-2000 X X
LandScan 2004 2005

|

4 various commercial and government high resolution satellites.

® Landsat impervious surface maps from the National Land Cover Dataset.

¢ GeoCover’s 30 meter land cover product, based on circa-1990, 2000 Landsat.

¢ Radiance-calibrated Nighttime Lights product.

¢ US Census Bureau, International Programs Center.

fUN Population Division (2005), Urban Population Estimates.

¢ VMATP level 0 is global in extent and at 1:1,000,000 scale, VMAP level 1 products are 1:250,000

regional maps.

Note: The four leftmost columns are primarily based on expert and semiautomated classification of
satellite imagery, the rightmost column relies on paper maps and charts, and the middle columns
use a combination of both. LITES is not listed for the sake of brevity, and is based entirely on
nighttime lights data.

observation of impervious surfaces,” (2) remotely sensed nighttime observation of arti-
ficial illumination, and (3) map layers characterizing the built environment or cen-
sus data. Only one of these attributes is central to the urban models of every global
urban map: impervious surface area or built environment. The built environment is
visible in the daytime satellite imagery that underlies the VM AP0, GLC00, GLOBC,
IMPSA, MOD500, MODIK, and LSCAN maps. Although GRUMP and HYDE3 do
not directly include daytime imagery in their models, they rely heavily on maps that do
(VMAPO, GLCO00, and LSCAN). For the remainder of this chapter, the term “urban”
refers the human built environment or impervious surface. For the six binary raster

* Impervious surfaces reduce the penetration of rainwater into the soil to levels below that of undisturbed
land. Examples of impervious surfaces can involve many forms of human disturbance, including:
paved and dirt roads, parking lots, buildings, airport runways, etc. Ridd (1995) provides an excellent
introduction to impervious surface from the perspective of remote sensing.
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maps considered here, the “urban” label means that a pixel is more than 50% impervi-
ous surface. For the two continuous maps, the actual amount of impervious surface
area is described by the “percent-urban” label. Table 13.2 lays out the complex relation-
ships between the global maps and their input data, and serves as a reference point for
a more detailed discussion of their methodologies.

VMAPO (Table 13.2, rightmost column), is the earliest global map that includes an
urban class. It is a GIS product created by the United States through digitizing a large
collection of roughly 1:1,000,000 scale maps and navigational charts starting in the
1960s. The DCW map was based on the 1992 version of VMAPO (Danko, 1992). The
urban polygons of VMAPO often trace the outer edge of urban areas, without delineat-
ing interior patches of nonurban land. These urban polygons are not labeled with the
date of the underlying map from which they were extracted, and are sometimes poorly
geolocated. Because VM APO was designed to support the needs of the US government,
it also contains a higher level of detail within regions of national interest to the United
States (e.g., Russia). Nevertheless, because VMAPO is a global dataset and a conser-
vative estimate of urban land area, it is used as part of the input stream for GLCO00,
GRUMP, and HYDE3. LSCAN relies on higher resolution VMAP products (levels 1
and 2), which are at scales of 1:250,000 and are based on more recent imagery.

The four columns on the left side of Table 13.2 describe maps that draw on a
full year of multispectral coarse-resolution daytime satellite imagery. MOD500 and
MODIK are derived from the supervised classification of bimonthly data spanning
the year 2001 from the MODIS instrument aboard NASA’s Terra and Aqua platforms
(Schneider et al., 2003, 2005, forthcoming). MODS500 is based on newly released
463-m resolution nadir bidirectional reflectance factor-adjusted data (NBARs), and
MODIK is based on the 927-m resolution NBARs data (Schaaf et al., 2002). Both
MODIK and MODS500 use manual interpretation of medium-resolution (30 m)
Landsat imagery and other ancillary datasets to construct training sites for super-
vised classifications. GLCOO is also built using 1 year of 1-km resolution data from
2001, but GLCOO0 draws from the Satellite Pour I’Observation de la Terre (SPOT4)
VEGETATION instrument. The GLCO0 map was completed by 18 separate pro-
duction regions, each relying primarily on unsupervised classification methods
(Bartholome and Belward, 2005). The GLOBC map relies on 300-m resolution data
spanning May 2005—April 2006 from the Medium Resolution Imaging Spectrometer
(MERIS) instrument aboard the ENVISAT platform. In general, the GLOBC meth-
odology exploits unsupervised approaches similar to those of GLC00. The exception
for GLOBC is Australia, where it appears that the road network and other map layers
were included during processing. Over several large regions and countries, GLOBC
has relied on the earlier GLCO0O map for the urban class, including: South America,
much of Western Asia, much of Africa, and all of India and Japan. The MODIK and
GLCO00 maps incorporate LITES data to constrain their classifications (1996-1997
and 1994-1995 LITES, respectively), whereas MODS500 is the first global map to
rely entirely on daytime multispectral MODIS observations.

The remaining maps in the center columns of Table 13.2 use a combination of
remote sensing and ground-based inputs. GRUMP integrates VMAPO, thresh-
olded 1994-1995 LITES, census data, and a variety of ancillary GIS datasets such
as city gazetteers (Center for International Earth Science Information Network,
2004). IMPSA models impervious surface area globally by using LSCAN 2004
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and radiance-calibrated LITES 2000-2001 data (Elvidge et al., 2007). The IMPSA
model was trained using a medium-resolution Landsat map of impervious surface
area for the United States produced by the USGS as part of the National Land Cover
Data set project (Vogelmann, 2001; Yang et al., 2003). HYDE3 combines LSCAN
2005 population density with 2003 UN national urban population estimates, city
gazetteers, and assumptions about mean urban population densities to estimate the
fraction of urban land cover (Goldewijk, 2001, 2005).

One additional global land cover map that also contains a representation of urban
areas is GeoCover Land Cover (LC). GeoCover LC is a supervised land cover clas-
sification of the GeoCover image archive, a near-global collection of circa 1990 and
2000 Landsat imagery (Tucker et al., 2004). Although the underlying 30-m resolu-
tion imagery is freely available (Global Land Cover Facility, 2007), the land cover
classification is a commercial product produced under NASA contract. GeoCover
LC includes a class for “urban/built-up, developed areas greater than 60 m wide,”
which was produced by digitizing urbanized areas visible in the Landsat imag-
ery. GeoCover LC serves as an input into the LandScan product stream, but is not
included in this analysis because it is not a truly global dataset* and its prohibitive
cost makes widespread use impractical.

The two other products included in this study, LITES and LSCAN, map urban-
related variables. LSCAN models the ambient human population using GeoCover
LC, MODIK, VMAP level 1 and above, GIS census products, Landsat data, and
high-resolution imagery (1-5 m). Although LSCAN was originally conceived during
work related to LITES (Sutton et al., 1997; Dobson et al., 2000), the current LSCAN
versions do not rely on LITES data (Bhaduri et al., 2002). LSCAN is an ongoing
project, and each year the LSCAN team releases a new global map based on the
latest census estimates from the International Programs Center at the US Census
Bureau and new urban imagery and map layers.

The LITES map is created by the Earth Observation Group at the National
Geophysical Data Center (NGDC) using data from the Defense Meteorological
Satellite Program’s Operational Line Scanner (DMSP-OLS), a nighttime imaging
satellite that has a primary mission of monitoring cloud cover by moonlight. NGDC
models the average illumination intensity of human settlements and activities for all
cloud-free observations within a given year by compositing many individual images
at 2.2-km resolution, later resampled to 1 km (Elvidge et al., 2001; NGDC, 2007). The
DMSP-OLS instrument applies a variable gain during flight, and the gain settings are
only monitored on a select number of orbits. Because of these variable gain settings, it
is not possible to convert standard LITES composites into radiance values. However,
the NGDC group also produces a smaller number of radiance-calibrated composites
using fixed-gain imagery (Elvidge et al., 2007). Whether the composites are radi-
ance-calibrated, thus far, the relationship between LITES and urban areas appears
to be complex and context-dependent (Imhoff et al., 1997; Henderson et al., 2003;

* GeoCover LC is often obscured by clouds in the tropics, uses other datasets for coverage of the United
States, and has no land cover data for regions above 60°N, over most of Europe (except for a land—water
mask), all of Australia and New Zealand, and much of Central Asia.
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Schneider et al., 2003; Small et al., 2005), which is why the IMPSA team draws on
LSCAN as well as LITES data for their urban model.

13.3 PORTRAITS OF THE GLOBAL URBAN MAPS ACROSS
SCALES — FROM CITIES TO CONTINENTS

13.3.1  MAP PREPARATION

Not all of the global urban maps share a common geospatial model (see Table 13.1,
rightmost column). For our analytical environment, we selected a geographic pro-
jection, 30” arc-second raster (approximately 0.86 km? cells at the equator), and
the WGS-84 datum. LITES, LSCAN, GRUMP, and IMPSA required no modifica-
tion. HYDE3 was downsampled to 30” arc-second cells from 5 arc-minute cells
(approximately 9.27 km wide at the equator). The MODIS LC group provided a
geographic reprojection of their native sinusoidal 1 km and 500 m products. For
the 500 m MODIS product and the 300 m GLOBCOVER map, we aligned the
15” arc-second and 10”7 arc-second grids (respectively) with the common 30” arc-
second grid. Although GLCOO is in a geographic projection, the pixel size was
resampled from 32.14” arc-seconds to 30” arc-seconds. Finally, the VM APO product
is in a vector format, and was converted to raster. All of the modified products were
checked against their native counterparts at various stages, and biases were deter-
mined to be negligible throughout the map preparation process.

To make comparisons across maps at continental, subcontinental (regional), and
national scales, we needed a coarse-resolution map of international boundaries.
Unfortunately, few options exist at 1-km spatial resolution with a consistent land
and water boundary. We opted to use the international boundary grid produced
and distributed by the LSCAN program, as it is at 30” arc-second resolution and is
updated annually. To account for significant differences in how each map delineated
land and water, we created custom international border and land-water boundary
files for each product. In this step, land pixels from each map that fell outside of the
LSCAN land-water mask were retained as land and assigned to the country of their
nearest land neighbor in the LSCAN country boundary file. This procedure prevents
the land water mask from eliminating some of the coastal areas within several of the
maps, which can result in serious underestimation of urban land.

We then cross-walked the LSCAN country names (derived from the US Census
Bureau) to their counterparts in the system used by the UN Statistics Division and
the International Organization for Standardization (UN Statistics Division, 2007).
These UN country codes are accompanied by a 20-region scheme for delineating
world regions. The regional scheme used throughout the rest of this analysis is a
slightly modified version of this UN regional scheme (Figure 13.2). These modifica-
tions include: (1) reassignment of Sudan from the Northern Africa region to the West
Africa region in order to maintain Sudan’s traditional association with the super-
region of sub-Saharan Africa; (2) combining the Australia and New Zealand region
with the North America region on the basis of demographic and economic simi-
larities (e.g., moderate levels of projected population growth and in-migration); (3)
merging Japan with the Western Europe region due to Japan’s similarly high levels of
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FIGURE 13.2 (a) Map of the ten regions used in this study (modified from the UN regional
scheme). The grayscale in this map match the legend in Figures 13.5, 13.8, and 13.10. Figure
13.2(b) tracks the UN Population Division estimates for urban populations by region from
1950-2030 (UN Population Division 2005). (From Potere, D. and Schneider, A. GeoJournal,
69: 55-80, 2007. With permission.)

contemporary urbanization and projected population decline; and (4) combining the
remaining UN regions into 10 superregions, the majority of which are related to the
nine-region scheme used by the UN Human Settlement Programme (UN-HABITAT;
Angel et al., 2005). Figure 13.2 depicts these 10 regions and describes the UN’s
urban population projections for each region through 2030.

The global GLC-2000 v1.1 map indicates that virtually no urban areas are pres-
ent in southern China. To correct for these and other urban omissions, we relied on
recently updated regional GLC maps. These updates are still based on circa 2000
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imagery, but represent refinements in the regional protocols by the GLC2000 pro-
duction regions for Europe and Asia. By including these improved regional maps, the
GLCO00 map used in this analysis contains 9% (28,000 km?) more urban area than
the original global map (v 1.1). The following regions received additional urban area:
Southern Europe (9000 km?), Northern Europe (6800 km?), East Asia (4700 km?),
Southeast Asia (4500 km?), and South Central Asia (2300 km?).*

13.3.2  City-ScALE DESCRIPTIONS

Figure 13.3 depicts the eight urban maps and two urban-related maps for Beijing
and Tianjin, China (top row); Mumbai, India (second row); Paris, France (third row);
Moscow, Russia (fourth row); and Cairo, Egypt (bottom row). The first two columns
are for the urban-related maps: Nighttime Lights for 1 year spanning 2000-2001
and LandScan 2005. The global urban maps begin with the third column (from
left to right): VMAPO, GLC00, GLOBC, HYDE3, IMPSA, MOD500, MODIK,
and GRUMP. Although only HYDE3 and IMPSA map urban land as a continu-
ous variable (fraction of a pixel classified as urban), for the purpose of facilitating
comparison in these visualizations we create continuous variables for the binary
(urban/rural) maps by aggregating these binary maps from 30” arc-seconds pixels to
1.5” arc-minute cells (approximately 3-km resolution at the equator). Each new 1.5
arc-minute cell is shaded from zero percent urban (blue) to fully urban (red) using
a linear scale. The same legend is used for IMPSA and HYDES3, but those pixels
remain at their native resolution (30” arc-seconds and 5" arc-minutes, respectively).
All of the city subsets are approximately 150 x 150 km and oriented north up.

Even a quick glance at the VMAPO column confirms the often dated nature
of this map, particularly in countries of the developing world; significant urban
expansion has occurred in all of these cities since the charts and maps that underlie
VMAPO were digitized. In the GLCOO column, the heterogeneous impact of the
distributed mapping strategy is apparent; the Europe mapping team clearly enforced
a different standard for the urban classification of the Paris metropolitan area than
the China team did for Beijing and Tianjin. The close relationship between the
GLOBC and GLCO0O research teams is evident in Mumbai, where GLOBC relied
completely on the GLCOO map. The important role of both LITES and LSCAN is
clear when one considers the shape of IMPSA’s Cairo map, which includes both
the distinctive fan shape of the Nile delta and the urban core of the city center. The
two MODIS maps are quite similar to IMPSA in overall form, but are somewhat
more expansive. Comparing GRUMP to LITES reveals the important role of the
thresholded nighttime lights data in the GRUMP mapping process. Note that sev-
eral urban clusters in the LITES imagery for both Beijing-Tianjin and Cairo do not
appear in GRUMP because the LITES imagery in Figure 13.3 is for 2000-2001,
whereas GRUMP relied on 1994-1995 LITES. GRUMP’s use of buffers surround-
ing gazetteer city points is also noticeable in the cluster of circular urban patches
in the lower left corner of the GRUMP Beijing map. Overall, these examples from

“ MODIK also includes a small region of urban omission, just visible as a thin stripe over southern
Europe in Figure 13.7(g), which was not corrected.
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Figure 13.3 demonstrate the diversity of the eight global urban maps, and the chal-
lenges of intermap comparison.

We continue this city-level comparison by examining the size distribution of
urban “patches,” where patches are defined as contiguous areas of urban pixels
(Figure 13.4).* This analysis provides information on the effective minimum map-
ping unit used in each map, as well as some indication of whether urban area is
distributed in large clusters (e.g., extensive cities such as Chicago), or in a large
number of small-sized patches (e.g., small towns and villages, 1-2 km? in size).
The absolute number of urban patches varies widely across datasets (in descending
order): MODS500 (140,000), GLOBC (88,000), MODIK (54,000), VMAPO (32,000),
GLCO00 (22,000), GRUMP (21,000), and HYDES3 (17,000). The number of patches is
influenced by the resolution at which each map is produced; the two maps conducted
at resolutions finer than 30” arc-seconds (GLOBC and MOD500) have higher num-
bers of patches than the rest, whereas HYDE3 (5" arc-minutes resolution) naturally
has the fewest patches. IMPSA is not included here or in Figure 13.4 because of the
difficulty in delineating individual patches from a continuous (percent impervious
surface) 1-km resolution map.

The most striking feature of Figure 13.4 is the strong log-linear decay of patch
size from 2 to 1000 km? for all seven maps. Although this trend is consistent with
the long-recognized rank-size rules observed for city sizes at the national scale, it
is interesting how marked the trend is among global maps that are based on such
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FIGURE 13.4 (See color insert following page 324.) The frequency of urban patch sizes
(log-log scale) for each map (excluding IMPSA). Observations are indicated with hollow
circles and the solid line is a fitted spline. HYDES3 is plotted starting at 10 km? because of
the coarse resolution of HYDES3 pixels (5° arc-minutes). (From Potere, D. and Schneider, A.
GeoJournal, 69: 55-80, 2007. With permission.)

* Patches were described by using a rooks-case rule for adjacency.
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a diverse set of methods. On the far left of Figure 13.4 (smallest patch sizes), the
double peaks for the four imagery-based distributions correspond to patches that
contain only one or two pixels (GLC00, GLOBC, MODIK, MOD500). Because the
geographic projection used for map comparison is not equal-area, single pixels in
each map vary in size from 0.86 km? at the equator to 0.42 km? at the southern tip
of Greenland. The overall shape of the GRUMP distribution is quite distinct, and
it reflects the larger size of most GRUMP patches relative to all other global urban
maps. Yet, for the majority of city sizes, GRUMP adheres to the pattern of roughly
log-linear decay.

13.3.3 REGIONAL-SCALE DESCRIPTIONS

Figure 13.5 and Table 13.3 present the total areal extent of urban land for each
of the eight urban maps at the scale of world regions. The thickness of each hori-
zontal bar in Figure 13.5 is scaled to reflect the relative amount of urban land
within each of the eight maps. These horizontal bars are divided into colored
sections representing the relative distribution of urban land within each of the
10 world regions (the 10-color scheme is the same as in Figure 13.2). Because
both axes are scaled proportionately, it is possible to make direct comparisons
between segments and across both rows and columns. The most obvious feature
of Figure 13.5 and Table 13.3 is the previously noted order-of-magnitude differ-
ence in total urban area, revealed by the pronounced differences in the thickness
of the eight horizontal bars.
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FIGURE 13.5 (See color insert following page 324.) The distribution of urban land per con-
tinental region for eight global urban maps. The thickness of the horizontal bars reflects the
relative amount of urban land within each of the eight maps. These horizontal bars are divided
into sections representing the relative distribution of urban land area within each of the ten
regions. (From Potere, D. and Schneider, A. GeoJournal, 69: 55-80, 2007. With permission.)
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TABLE 13.3
Areal Extent of Each of the Eight Global Urban Maps (in km?) for Each of
the 10 Regions? and Select Countries

Region VMAPO GLCO0 GLOBC HYDE3 IMPSA MODS00 MOD1K GRUMP
North America, Australia & N. Zealand 91,123 95982 68,409 186303 89,963 140,506 134764 933537
USA 79607 80482 26434 161,041 75488 121200 117,504 755,881
Canada 4,201 6,054 6021 12400 11,300 8,704 7895 132472
Australia & New Zealand 7315 9446 35954 12,845 3161 10,602 9366 45,027
Westem Europe & Japan 41,327 72,761 571,602 108,435 66,469 105449 178,887 641,608
Westem Europe 15789 27,372 18726 56509 20,855 47855 53,386 180,709
Northermn Europe 16,083 27413 13855 18788 13,157 12585 21,829 159,799
Southemn Europe 4,102 16,133 23183 19626 19250 25460 50,127 196,262
Japan 5,352 1,842 1838 13513 13207 19548 53545 104,839
Eastern Europe 67,0656 35937 28232 35796 345640 63494 63487 301,506
Russia 40,760 15044 15374 16321 20,073 26504 37,731 188,346
Eastern Europe (excluding Russia) 26296 20893 12858 19475 14467 36990 30,757 113250
Central Amevrica & Caribbean 3,466 3,468 5322 17,802 17681 13,099 10,274 154951
Central America 2534 2,309 4146 12254 14245 8,896 8,863 122462
Caribbean 933 1,159 1,176 5,548 3335 4,203 1411 32490
South America 17,074 10731 10801 30499 35382 82,242 42876 374,942
Brazil 10,113 5,025 5007 17,021 17938 39989 19254 189286
South America (excluding Brazil) 6,962 5,706 5794 13478 17445 42253 23622 185655
Sub-Saharan Africa 6,828 17,937 20458 27,201 49,788 31,053 39,621 144,996
East Afnca 1,585 3,286 4,835 6,181 17,887 5006 10,136 32310
West Africa (plus Sudan) 1,483 5,378 6879 10448 20430 12788 15468 45367
Southem Africa 2459 7.883 7.775 7 4,965 8486 10482 49977
Middle Africa 1,301 1,390 970 2,856 6,506 4772 3535 16,741
Western Asia & North Africa 7433 16905 17,285 27,114 34492 37,782 44,039 222113
West Asia 5,732 6,108 6684 20396 21527 27347 29393 145247
Northem Afnica {excluding Sudan) 1,701 10,797 10601 6,717 12,966 10435 14,645 76,866
South Central Asia 22,026 31,680 29,690 32327 112296 64,973 86,298 350,383
India 8,160 21288 20904 17,020 76244 31334 30,857 204,676
South Central Asia (excuding India) 13,866 10,392 8786 15307 36,052 33639 55440 145708
East Asia 11,063 10,788 67,562 44,634 90,059 90,966 109,100 297,692
China 9579 10,012 65263 39547 82301 81120 88977 261,920
East Asia (excluding Japan & China) 1,484 776 2299 5,087 7.758 9846 20123 35772
Southeast Asia & Pacific Islands 8981 11,819 7416 21,874 40933 29,197 12,597 102,290
Southeast Asia 8866 11,714 7308 21,560 40,252 28911 12,522 97440
Melanesia a7 102 104 216 5563 285 T 3,454
Micronesia 4 3 4 40 68 0 4 688
Polynesia 13 0 0 58 60 0 0 707
Total (sq. km) 276,377 308,007 312,779 531,985 571,604 658,760 726,943 3,524,109

2 Modified from the UN regional designations.
> The North American total includes Greenland, Bermuda, and St. Pierre and Miquelon.

The pattern of regional banding within each map (measured on the horizon-
tal axis) reveals large differences at the scale of world regions. The results for
VMAPO reflect the Cold War legacy of this data source, as shown in the wide
bands for Eastern Europe (light green bar, third from left). The US agencies
responsible for VM APO likely focused more mapping efforts on this region, caus-
ing VMAPO’s relative amount of Russian urban land to be far above that of any
other map (Table 13.3). Aside from differences in the relative importance of South
Central and East Asia, GLCO0O and HYDE3 have very similar regional banding
patterns. GLOBC has by far the widest East Asian (salmon) band, nearly the same
width as North America, Australia, and New Zealand (Figure 13.5). It is surpris-
ing to note that GLOBC attributes more urban land to Australia than to the entire
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United States (Table 13.3). Overall, IMPSA’s regional bands are the most distinct
from the rest; in relative terms, IMPSA has the least amount of urban area in the
North America, Australia, and New Zealand region (dark green), and the most
in Asia (red, salmon, and gray). This difference can be explained by IMPSA’s
reliance on LSCAN; because LSCAN tracks population density, it favors the two
demographic billionaires of India and China. The most significant difference
between the new 500 m MODIS map and the older 1-km MODIS map is the
reduction in the urban area of Western Europe, and the increase in the urban area
of South America. The regional distribution of urban area (but not the absolute
amount of urban area) for GRUMP is nearly identical to the distribution of urban
land derived by applying Angel et al.’s (2005) urban population densities to UN
regional urban population estimates for 2000. This seems to indicate that the
GRUMP team normalized their urban area totals to UN urban population esti-
mates (at least at the regional level).

13.3.4 GLOBAL-SCALE DESCRIPTIONS

Figure 13.1 presents the total urban extent of the eight maps at the global scale. As
noted earlier, the urban extents vary by an order of magnitude, from 0.3 to 3.5 million
km?. For scale, the difference in the GRUMP and VMAPO totals is approximately
equal to the land surface area of India. It is a challenge to move beyond the plots
of Figures 13.1 and 13.5 and to display global 30” arc-second resolution maps with
sufficient detail for a meaningful comparison; at a reasonable resolution of 300 dots
per inch, the 40,000 x 20,000 raster (column x row) would be roughly 3.4 x 1.7 m
in size. Even at this resolution, the urban class would be difficult to discern because
urban areas occupy at most 1-3% of the Earth’s 140 million km? of land. One way to
deal with these issues is through the use of Geodesic Discrete Global Grids (DGGs)
(Sahr et al., 2003). DGGs are a class of equal area, uniformly distributed partitions
of the Earth’s surface. The hexagonal partitions provide a scheme for assessing the
urban area of a given map that is independent of arbitrarily defined political bound-
aries or world regions, constant in cell size (unlike the varying raster cell sizes of
a geographic projection), and constant in cell shape (unlike the deformed paral-
lelograms of the sinusoidal projection). Despite these clear advantages, DGGs have
only recently been used for map comparisons (Potere and Schneider, 2007). By
computing the square root of the facet area, we can also derive a rough estimate of
effective spatial resolution of the DGGs across different hexagonal sizes (Small and
Cohen, 2004). For illustration, in Figure 13.6 we use five resolutions of DGGs with
hexagonal cell sizes ranging from 800 to 70,000 km? (29- to 264-km resolution).
By aggregating the 30” arc-second pixels of our global urban maps up to the 51-km
resolution DGG facets (yellow facets in Figure 13.6(b)), we have created a series of maps
that provide a comparative view of urban areas at a global scale (Figures 13.7(a—h)).
In all of these maps, royal blue areas represent completely urban-free facets. Of the
eight maps, IMPSA (Figure 13.7(d)) has by far the fewest facets that are completely free
of urban land, whereas GLCOO (Figure 13.7(b)) has the most. From these global-scale
visualizations, regional trends are apparent: VMAPO (Figure 13.7(a)) portrays Eastern
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FIGURE 13.6 (See color insert following page 324.) Five levels of a discrete global grid
(DGG) system with hexagonal facets for the globe (upper left) and over the United Kingdom
(lower right). The DGG displayed for the globe is at the coarsest facet size of 70,000 km?
(purple facets in the lower right). The map legend also shows the effective spatial resolu-
tion for each facet size, estimated by the square root of the facet area. (From Potere, D. and
Schneider, A. GeoJournal, 69: 55-80, 2007. With permission.)

Europe as a more extensive urban network than Western Europe, GLCOO depicts a world
in which Europe and the Eastern United States are the only urban-dominated regions
and Africa is almost completely urban-free, GLOBC is unique in depicting Australia as
an urban system on par with Western Europe or North America, HYDE3 has the most
uniform view of the distribution of urban land, and IMPSA portrays a massive por-
tion of the world’s surface area as very low-fraction urban (the light blue regions of the
IMPSA map (Figure 13.7(e)) represent DGG facets that are less than 0.05% urban).

In Figure 13.7(i), the amount of urban area for each grid cell is averaged across
all eight maps. The total extent of this mean urban map is 864,000 km?. Because
GRUMP’s urban area is more extensive than any of the other five maps, GRUMP
has strongly influenced this mean urban map, as is evident in a comparison of
Figures 13.7(h) and (i). In the mean map, the largest blocks of intensely urban areas
include the Eastern United States, Western Europe, India, Eastern China, and Japan,
and to a lesser degree the southeastern coast of South America. The largest contigu-
ous urban-free areas across all eight maps are the Sahara desert, interior Australia,
Siberia, Mongolia, Northern Canada and Greenland, the Rhub al Khali of Saudi
Arabia, and to a lesser degree the tropical rainforests of South America and the
Kalahari Desert of Southern Africa.
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13.4 INTERMAP COMPARISONS

13.4.1 Previous COMPARATIVE STUDIES

Urbanized areas make up a small portion of the Earth’s total land area, and the
urban class is rare when compared to land cover types such as forest, grassland,

%. - MODIS 500 m Urban Land Cover |

History Database of the o Global Rural-Urban

Global Environment = Mapping Project
tvpsA only 7e) - Percent Uibon [ |
<0.05% within Each o
- > ho) ) Q & G Q & N
2500 sq. km & ~ oy & A2 AS Vv }o) A N
Urban q & \Q/ \jo/ ‘1<,°/ %Q/ /\(0/

Hexagonal Cell

FIGURE 13.7 (See color insert following page 324.) Depiction of the percentage of urban
land per facet for all eight global urban maps, aggregated to a discrete global grid with hex-
agonal facets 2,591 km? in area (effective resolution of 51 km); (i) shows the amount of urban
area for each grid cell averaged across all eight maps. Dark blue indicates absence of urban
land. (From Potere, D. and Schneider, A. GeoJournal, 69: 55-80, 2007. With permission.)
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FIGURE 13.7 (continued)

and savanna. This minority status has led to scant urban-specific analysis in
comparisons of global land cover products. This study, together with a companion
article (Potere and Schneider, 2007), is the first systematic global comparison
focused on urban maps. Although there has been a recent increase in the number of
global-scale land cover comparison projects, these assessments have either failed
to include the urban class, considered only areal extent, included only a subset of
currently available urban maps, or inadvertently compared multiple maps whose
urban layer is actually derived directly from VMAPO (Hansen and Reed, 2000b;
Giri et al., 2005; See and Fritz, 2006; Jung et al., 2006; McCallum et al., 2006;
Mayaux et al., 2006).

At regional and city scales, there have been a number of comparative studies that
include some of the urban maps considered here. Schneider et al. (2003) compared
VMAPO, LITES, and the MODIS-derived urban map for cities in North America,
uncovering variable amounts of underestimation of urban land by VMAPO and sys-
tematic overestimation of urban land by the 1994—1995 nighttime lights data (thresh-
olded) when compared against more recent medium-resolution maps of urban land
derived from Landsat imagery. Tatem et al. (2005) compared a map of urban areas in
Kenya to five global scale urban maps, and unsurprisingly reported that a medium-
resolution Kenya map based on Landsat and Radarsat imagery is of higher accuracy
than the coarse-resolution global maps. Finally, Small et al. (2005) assessed thresh-
olded 1994-1995 and 2000 LITES data against Landsat-based maps for a global
sample of 17 cities, confirming that no single LITES threshold is suitable for map-
ping urban land.
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13.4.2  Per-Pixe COMPARISON

Contingency tables, sometimes referred to as confusion matrices, are a common
way to begin intermap comparisons (Table 13.4). These tables are produced by
overlaying a set of maps and estimating the areas of agreement and disagreement
pixel by pixel. We constructed contingency matrices for all eight global urban
maps (Table 13.5). Each entry describes the fraction of map A (shown in the rows)
also present in map B (shown in the columns). For example, although VMAPO
is a part of the input data streams for both GLC0O0 and GRUMP (Table 13.2),
only 41% and 76% of this map agrees with GLC00 and GRUMP, respectively.
Some portion of this could be due to differences in georegistration; relative to
the other global maps, GLCOO appears to be shifted 1’30” eastward and 30~
arc-seconds southward over parts of North America, Central America, and the

TABLE 13.4
A Typical Contingency Table for a Two-Class Map Comparison
n=a+b+c+d

Validation Data

Presence Absence
Data under review Presence a b
Absence c d

Note: For the map comparisons in Section 13.4, there is no distinction between “data under
review” and “validation data,” because the contingency table is used to compare two
maps. In the assessment of Section 13.5, “data under review” is the global urban map
in question and “validation data” is the medium-resolution Landsat map.

TABLE 13.5
Summary of the Contingency Tables for Each of the 28 Pairwise Map
Comparisons

VMAPO GLC00 GLOBC HYDE3 IMPSA MOD500 MOD1K GRUMP

VMAPO 1 0.41 0.28 0.37 0.26 0.57 0.54 0.76
GLCO00 0.37 1 0.47 0.40 0.27 0.55 0.60 0.89
GLOBC 0.25 0.47 1 0.29 0.24 0.49 0.52 0.72
HYDE3 0.19 0.23 0.17 1 0.18 0.34 0.38 0.74
IMPSA 0.12 0.15 0.13 0.17 1 0.25 0.26 0.46
MODS500 0.24 0.26 0.24 0.28 0.22 1 0.51 0.75
MODIK 0.21 0.26 0.22 0.28 0.20 0.45 1 0.80
GRUMP 0.06 0.08 0.06 0.11 0.07 0.14 0.16 1

Note: Each entry represents the percent of Map A (shown in the rows) that is also present in Map B
(shown in the columns).
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Caribbean relative to all of the other urban maps. It is not possible to correct for
this shift because the georegistration problem appears to be nonconstant within
the northwest hemisphere. Similar registration problems are not apparent for
GLCO0O0 in any other region of the world (or for any other urban map examined
in this chapter). A more methodical evaluation of georegistration is beyond the
scope of this study.

The GLCO0O0 example highlights one of the fundamental problems of conduct-
ing a global map comparison at the pixel level: a shift of a single pixel can
significantly reduce map agreement. We address some of these concerns with our
multiscale comparison in Section 13.4.4. Another issue that arises when inter-
preting these simple contingency tables is the order-of-magnitude variance in
total map area (Figure 13.1). For instance, 60% of GLCO0O0 agrees with MODIS,
whereas only 26% of MODIS agrees with GLCO00. This is not surprising when
one considers that MODIS is 2.4 times the size of GLCO00. Even if every MODIS
pixel were in agreement with GLCOO, this would only represent 42% of MODIS
urban land.

There are several statistics based on contingency tables that have long been used
to confront the challenges of assessing map agreement against random chance and
for maps of varying extent (Congalton and Green, 1999). There remains consider-
able debate in both the remote sensing and the spatial ecology literatures concerning
the selection of optimal map agreement measures (Fielding and Bell, 1997; Manel
et al., 2001; McPherson et al., 2004; Allouche et al., 2006; Lobo et al., 2007; Liu et
al., 2007; Foody, 2006, 2007), yet there is broad consensus that statistics based on
the entire contingency table are welcome improvements on the basic accuracy, sen-
sitivity, and specificity measures (top three rows, Table 13.6). In our comparison, we
follow the recommendations of Foody (2006, 2007) and rely on several agreement
measures across a wide range of spatial scales. We choose Cohen’s kappa (Congalton
and Green, 1999), the normalized mutual information (NMI) coefficient (Forbes,
1995), and the true skill statistic (TSS) (Allouche et al., 2006) for their consideration
of both omission and commission errors, their reliance on the entire contingency
table, and their robustness with respect to changes in the extent of the maps under
review (bottom three rows, Table 13.6).

Cohen’s kappa statistic (k) is designed to measure the strength of agreement,
taking into account the potential for chance agreement (Cohen, 1960; Monserud
and Leemans, 1992; Goldewijk and Ramankutty, 2004). Landis and Koch (1977)
suggest that Cohen’s x values of 0.00-0.20 can be considered “slight” agreement,
values of 0.21-0.40 as “fair,” and 0.41-0.60 as “moderate” agreement; however,
they caution that these are only intended as useful benchmarks. In Table 13.7, we
report global-scale kappa values for the 28 map pairs. The overall impression is
that these maps are quite distinct on the per-pixel level, as shown by the relatively
low level of agreement among all of the map pairs (K = 0.26). The strongest agree-
ment is between the two map pairs created by related research groups: MODIK
and MOD500 (x = 0.48), and GLC00 and GLOBC (x = 0.47). The next strongest
agreements are between GLC00 and VMAPO, and GLCO00 and the two MODIS
maps. This result is also expected, considering that VMAP is an input into the
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TABLE 13.6
Six-Map Agreement Measures Used in This Chapter
Measure Formula
Ove;;a[i Map Accuracy a+d
(OMA) n
Specificity d
(1 — Commission) h+d
Sensitivity a
(1 — Omission)
a+c
Cohen’s Kappa a+d) (a+bya+c)+(c+d)d+b)
n n?
| (a+b)a+c)+(c+d)d+D)
_ .
Normalized Mutual | (@)~ bin(b) ~cln(e) - din(d) + (a+ b)in(a +b) + (¢ + d)ln(c + )
Information nin(n) - ((a+c)in(a+c)+ (b +d)in(b+d)
True Skill Statistic sensitivity + specificity — 1, or
ad — bc
(a+c)(b+d)

Note: Each measure is based on the elements of the contingency table from Table 13.4. The top three
are traditional measures that suffer from biases due to variation in overall map extent. The bottom
three measures are more robust. Cohen’s kappa has the longest history of use for map accuracy
assessment.

TABLE 13.7
Cohen’s Kappa (x) Statistic? for Each Combination of the Eight Maps

VMAPO GLC0O0 GLOBC HYDE3 IMPSA MOD500 MOD1K GRUMP

VMAPO 1

GLCO00 0.39 1

GLOBC 0.26 0.47 1

HYDE3 0.25 0.29 0.21 1

IMPSA 0.16 0.19 0.17 0.17 1

MODS500 0.34 0.35 0.32 0.30 0.23 1

MODIK 0.30 0.36 0.31 0.31 0.22 0.48 1

GRUMP 0.11 0.14 0.11 0.19 0.12 0.23 0.27 1

2 A measure of overall map agreement.
b Kappa approaches 1.0 as maps approach perfect agreement. Kappa is designed to adjust for the amount
of agreement that one could expect due to chance alone.
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GLCO00 product and that MODIK and GLCOO are both derived primarily from
coarse-resolution daytime imagery.

To understand how map agreement varies in space, we conducted these same
per-pixel comparisons at a regional scale. We began by creating contingency
tables and associated map agreement statistics for all of the intermap compari-
sons (28 pairs) for each of the 10 world regions. We use box plots in Figure 13.8 to
display the median and quantiles of these 28 agreement measures for each region
(color-coded to correspond to Figure 13.2). We report Cohen’s kappa, NMI, and
TSS measures, where complete agreement is 1.0 for each measure. The dominant
trend in Figure 13.8 is that of decreasing overall agreement as one moves from
the affluent regions of North America and Europe (green bars on left) and toward
the developing countries of Asia (red, salmon, and gray bars on right). This does
not imply that the maps are any less accurate in these lesser developed regions,
merely that there is less intermap agreement. Across all three agreement metrics,
the overall pattern points toward three superregions: relatively high agreement in
the North America, Australia, and New Zealand region (also including Western
Europe in the TSS measure), relatively low levels of agreement in most of Asia
(South Central Asia, East Asia, and Southeast Asia and the Pacific Islands), and
medium levels of agreement for the remaining regions (Eastern Europe, Central
and South America and the Caribbean, Africa, and Western Asia). This trend
aligns well with our more complete understanding of cities of the developed
world, and the relative challenges of describing the complex and rapidly changing
cities of the developing world.

13.4.3 CouNTRY-LEVEL COMPARISON

By comparing the total extent of urban area within each country, we can approach
the issue of map agreement without some of the limitations of pixel-by-pixel com-
parisons. Large area aggregations using national borders also reduce the importance
of any persistent georegistration problems. We first present our country-level results
by ranking the 10 countries with the largest urban extents for each of the eight global
urban maps (Table 13.8). There is considerable variation in these rank lists, with
only United States, India, Russia, and China appearing in all of the top 10 lists.
For three maps, IMPSA, MOD500, and GRUMP, the five countries with the largest
mapped urban extents also have the five largest urban populations according to the
UN Population Division. For IMPSA, this correlation extends further; IMPSA’s top
10 rankings closely mirror their order by urban population. This is not surprising
considering the important role that demographic attributes play in the methodologies
of IMPSA and GRUMP.

We estimate the relationships between the country-level urban extents of each
map pair by using Kendall’s tau (t), which provides a quantitative assessment of the
correlation among the urban area rankings for all 223 countries within the global
datasets (Kendall, 1938) (Table 13.9). The overall impression from this measure is
one of far greater agreement than that of the per-pixel comparisons (Tables 13.5 and
7), with T = 0.73 and a range of 0.64—0.86 (top eight rows, Table 13.9). This country-
level analysis reveals that international comparisons of the relative areal extent of
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urban land are far less sensitive to the selection of a particular global urban map than
the per-pixel results imply. Of course, the large absolute differences between these
maps remain important across all aggregation scales. The map pairs with the highest
correlations are either produced by closely related research teams (GLCO0—GLOBC,
T = 0.86; MODIK-MOD500, T = 0.81) or both rely on similar demographic data
(HYDE3-GRUMP, © = 0.81).

In Table 13.9, we also explore the eight maps’ correlation with urban popula-
tion for the year 2000 (UN Statistics Division, 2008) and gross domestic product
(GDP) (purchasing power parity) for 2000 (World Bank estimate).* There are
many potential pathways through which a wealthier and more numerous urban
population could increase the amount of urban land in a given country. Although it
is not possible to determine the direction of causality, Table 13.9 certainly reveals
a strong positive correlation; the T = 0.71 for pairs involving either population or
GDP (all correlations are highly significant). GRUMP has the highest correlation
with GDP (t = 0.78), which is not surprising when one considers the important role
that thresholded LITES data plays in the GRUMP methodology and the strong
association between GDP and nighttime illumination (Welch, 1980; Sutton and
Costanza, 2002; Doll et al., 2006). IMPSA has the highest correlation with popu-
lation (T = 0.85), which again makes sense when one considers that LSCAN plays
an important role in the IMPSA methodology and LSCAN is heavily influenced
by demographic data.

13.4.4 MurTiResoLUTION HEXAGONAL COMPARISON

As mentioned previously, any comparison of the spatial pattern of urban land in
these eight global urban maps is made more challenging by the rarity of the urban
class, the very large differences in estimates of the total urban area for each map, and
the potential problems of georegistration. Although using national borders can help
alleviate these problems, the distribution of country sizes varies widely and it is not
possible to explore subnational intermap differences with this approach. Here, we
again turn to DGGs to create a global equal-area partitioning system with minimal
shape distortion over the entire Earth’s surface. For each hexagonal DGG facet, we
estimate the percentage of urban coverage for each of the eight global maps. Because
the resulting aggregation is continuous, we can test for linear correlation. We carry
out these tests in Figure 13.9 for each map combination (28 pairs) across all five
DGG resolutions (29 to 264 km). We restrict our regressions to hexagonal facets that
contain urban land in at least one map. Although this multiresolution global map
comparison is similar to the methods used by Goldewijk and Ramankutty (2004)
and Greyner et al. (2006), both studies used a series of traditional rectangular raster
grids in a geographic projection. Although the raster approach is more straightfor-
ward than DGGs, the drawback is that the size and shape of individual cells varies
widely with latitude. This effect creates nonuniform sampling, with sparser sam-
pling in tropical versus temperate regions.

* Purchasing power parity GDP data was available only for 169 countries; n = 228 for all other
correlations.
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The highest overall intermap correlation curves are for the closely related
MOD500-MODIK maps and for MOD500-HYDE3, a correlation that is more dif-
ficult to explain. The correlations among the VM APO-GLCO00-HYDE3 group (upper
left of Figure 13.9) are also quite high (at or about 0.8 for all resolutions). This result
is understandable considering that VMAPO was an important input for GLCOO0 (in
some regions, the sole input), and that HYDE3 was the only map to draw on both
GLCO00 and VMAPO. The lowest overall correlation curve is for VMAPO-GLOBC
(r < 0.6 for all resolutions). In general, GLOBC has the lowest correlation curves of
any of the maps; GLOBC is involved in 6 of the 11 curves where r < 0.7. When one
compares IMPSA and MODIK with either VM APO or GLCOO, the resulting correla-
tion curves are also quite low (r < 0.7). Considering that neither MODI1K nor IMPSA
drew on VMAPO, and given the aforementioned similarity between VMAPO and
GLCO00, these low correlations are also to be expected.

The slopes of the correlation curves are more difficult to interpret, but may be related
to the size distribution and density of urban patches within each urban map and their
relationship to the various hexagonal facet sizes. The 28 curves in Figure 13.9 can be
divided into three categories: 12 cases of flat curves (no significant change in correlation
with change in hexagon grid cell resolution), 8 cases of upward sloping curves (increas-
ing correlation with coarser hexagon grid cell resolution), and 8 cases of downward
sloping curves (decreasing correlation with coarser hexagon grid cell resolution). All but
one of the flat, resolution-independent curves involve MODIK (four cases) or MOD500
(three cases). The downward sloping curves are more evenly divided, but IMPSA (six
cases) and VMAP (five cases) are most frequently involved. Interestingly, nearly all of
the positive-sloped curves (seven of eight cases) involve GRUMP. This result is likely
tied to the unique size distribution of the GRUMP urban patches relative to all of the
other maps (Figure 13.4). At the finest DGG resolution of 29 km, each facet contains
roughly 900 km? of land. GRUMP has by far the most urban patches that are of suf-
ficient size to saturate these facets, potentially reducing intermap correlations at this
finest hexagon grid cell resolution. This effect gradually fades as the pixel sizes become
large relative to the mean urban patch size of GRUMP (resolutions above 150 km).

The DGG aggregates are also an effective tool for uncovering regional patterns in
the intermap correlations. The box plots of Figure 13.10 chart the distributions (median,
interquartile range, and outliers) of the Pearson correlations for the 28 global urban map
pairs across all five DGG resolutions and all 10 world regions. Each region has five box
plots showing correlations from the finest to the coarsest DGG (29 to 264 km, left to
right). The colors correspond to the world regional scheme used throughout this analysis
(Figure 13.2). From Figure 13.10, it is clear that the North America, Australia, and New
Zealand region (far left) has by far the strongest intermap correlations (+ = 0.83), indicat-
ing the highestagreementin terms of the intraregional distribution of urban land. By com-
parison, the Asian regions (four regions, far right) have the lowest intermap correlations
(r =0.66), and the remaining regions are intermediate (r= 0.79, red horizontal bars in
Figure 13.10).*

* When single maps are held out of the box plots from Figure 13.10, the same overall regional pattern
persists. The one exception is GLOBC; when GLOBC is held out, the mean North American correla-
tion increases to 0.91, and the other regions remain relatively unchanged.
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FIGURE 13.10 These box-plots capture the 28 pair-wise Pearson correlations between global
maps at five resolutions for each of ten world regions. For instance, the five left-most box-
plots represent the inter-map correlations for the North America, Australia, and New Zealand
region at five discrete global grid (DGG) resolutions (finest to coarsest, 29-264 km, left to
right). For this region, the median inter-map correlation (black horizontal bars) improves as
the hexagonal grid resolution becomes coarser. Each of the long horizontal bars represents a
mean correlation for a group of regions: the top bar (¥ = 0.83) is for North America, Australia,
and New Zealand, the middle bar (¥ = 0.79) is for Europe and Japan, South and Central
America, and Sub-Saharan Africa, and the bottom bar (7 = 0.66) is for Western Asia and
North Africa, South Central Asia, East Asia, and Southeast Asia and Pacific Islands. (From
Potere, D. and Schneider, A. GeoJournal, 69: 55-80, 2007. With permission.)

The eight maps have the most dispersed distribution of correlations in the East
Asia region (salmon color, including China). Most of the variance in this region
is caused by very low intermap correlations for all the comparisons that include
VMAPO or GLCOO (r =0.36 and r = 0.44, respectively) relative to the other six maps
(r > 0.60). As previously discussed, this result is an artifact of GLCOOQ’s significant
urban omissions over East Asia. VM APQ’s underestimation is likely tied to China’s
exceptionally rapid urban expansion over the past 20 years, and the older dates of
many of the maps used to create VMAPO.

13.5 MAP ASSESSMENT

To characterize what each global map means when it classifies an area as urban,
the comparative and descriptive studies described in Section 13.3 and 13.4 are not

© 2009 by Taylor & Francis Group, LLC



Comparison of Global Urban Maps 299

sufficient. A global assessment of these maps is the subject of ongoing research
(Potere, in preparation). Such an assessment should leverage both medium- and
high-resolution imagery to better characterize the accuracy of the coarse-resolution
global urban maps. We are in the first stages of conducting such an assessment,
using a combination of high-resolution imagery from GE and a large collection of
medium-resolution Landsat city maps from the Angel et al. (2005) and Schneider
and Woodcock (2008) assessments of global urban expansion (Figure 13.11). The
cities listed by Angel et al. (2005) are a global stratified random sample from the
roughly 4000 cities with populations greater than 100,000 (where the stratification
was conducted with respect to city population size, GDP, and geographic region).”
As an initial step, we verified the centroids of all of the Angel et al. (2005)
city maps using the high-resolution imagery of GE; all were correctly mapped.
We then overlaid the Landsat and coarse-resolution maps in search of cities from
within the sample that were omitted in the eight global urban maps. Table 13.10
presents a summary of the omitted cities by region, where we consider any city with
less than 5 km? of urban extent in a given map as omitted by that map. Similarly,
there are eight Asian cities of more than 1 million people that were omitted in at

120 Cities from

Angel et al. '05
Med. resolution

@ Med./high resolution

@ High resolution

30 Cities from
Schneider et al. '08

B High resolution

FIGURE 13.11 (See color insert following page 324.) A global sample of 120 cities with
populations greater than 100,000 from Angel et al. (2005) and 30 world cities from Schneider
and Woodcock (2008). The Schneider and Woodcock cities are blue boxes, all of which are
covered by high-resolution imagery from the Google Earth (GE) archive. The circles rep-
resent Angel et al. cities, and the color indicates the resolution of GE imagery available for
that city as of March 2008, where “high” is QuickBird, Spot 5, or aerial photography, and
“medium” is Landsat GeoCover. (From Potere, D. and Schneider, A. GeoJournal, 69: 55-80,
2007. With permission.)

*

Angel et al. (2005) created a universe of cities of 100,000 people or more in support of their sampling
plan. Data from their report, “Dynamics of Global Urban Expansion,” can be found at the Center for
Land Use Education and Research (CLEAR), http://clear.uconn.edu (last accessed March 1, 2008). In
stratifying by region, Angel et al. employed the same nine world regions used by the UN-HABITAT.
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TABLE 13.10
Omitted Cities from a 120-City Sample of Cities Greater than 100,000 in
Size

o
City Name £ 2 8 2 g X §
(Population 2000, x1000) g 8 g9 § é g § 3  ReolonalOmission Rates
© o = 2 2 E ©
Zhengshou, China (2,070) 0 East Asia (56%) (9/16)
Yulin, China (1558) | <5 0O
Leshan, China (1,373) | <5
Yiyang, China (1,343) 0 <5
Ulan Bator, Mongolia ~ (738)
Changzhi, China  (594) 0
Anging, China  (566) 0
Chinju, Korea  (287) 0 o
Chonan, Korea  (114) <5 <5
Baku, Azerbaijan (1,936) <5 <b W. Asia (63%) (5/8)
Sanaa, Yemen (1,653) <5 <5
Yerevan, Armenia  (1,407) D o
Malata, Turkey  (437) 0o o
Zugdidi, Georgia  (105) <5 <5
Gorgan, Iran ~ (189) 0 0 SC Asia (6%) (1/16)
Cebu, Philippines  (719) <5 SE Asia (8%) (1/12)
Vallendupar, Columbia  (274) 0 0 Latin Am. (19%) (3/16)
liheus, Brazil  (162) 0
Jequie, Brazil  (130) 0 <5 <5
Banjul, Gambia  (399) | <5 SS Africa (17%) (2/12)
Kigali, Rwanda (351) [ <5 O
Port Sudan, Sudan  (384) | <5 O <5 | N. Africa (25%) (2/8)
Tebessa, Algeria  (163) | <5
Fukuoka, Japan (1,341) <5 <5 ODC + Europe (3%) (1/32)
TotalOmissions| 8 18 11 0 0 0 1 2
Omission Rate (120 cities)| 7% 15% 9% 0% 0% 0% 1% 2%
5] ¥
& § ] ﬁ é 8 52 =
£ 295835 8 2
> o T = £ = ©
Abbreviations: ODC, Other Developed Countries; S8 Africa: Sub—Sahara_n Africa; SC Asia, South Central Asia,

Note: Cities that were completely omitted from a global urban map are marked by a “0,” and cities that
were mapped with less than 5 km? of urban land are denoted by a “< 5. To estimate omission
rates, any city mapped as 5 km? or less was considered an omission. The rightmost entries track
regional omission rates (across all maps). The bottom row tracks omission totals and rates for
each map (across all regions). The numbers in parenthesis to the right of the city names is the
population (in thousands) in the year 2000. The regional scheme is from Angel et al. (2005).

least one of the global urban maps. Overall, GLC00, GLOBC, and VMAPO have
by far the highest omission rates from our sample (15%, 9%, and 7%, respectively).
MOD500, IMPSA, and HYDE3 have no omissions, and GRUMP and MODIK
have 1-2% omission rates. By region, Asia has the most cities omitted by at least
one map (West Asia 63% of sample, East Asia 56%, Southeast Asia 8%, South
central Asia 6%), followed by Africa (North Africa 25%, sub-Saharan Africa 17%),
and Latin America (19%). Only one city from Europe and the Other Developed
Countries (ODC) region was omitted; Fukuoka, Japan, with a population of
1.3 million people was omitted by both GLCO0 and GLOBC. Only three of the
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maps, MOD500, IMPSA, and HYDE3, manage to map all 120 cities of the sample
(i.e., 0% omission rate); this result is the same if the threshold for considering a city
as omitted is increased from 5 to 10 km?.

This strategy of searching for omission errors by seeking out large urban centers
is a logical first step in assessing any global urban map. Essentially, we are evalu-
ating whether such maps can at least reproduce the information contained in city
gazetteers, which list the position and population of major cities worldwide. The
complement to this approach is to search for urban commission errors in regions
of the world that are least likely to contain developed land or a human presence.
In addition to checking desert environments (as discussed in connection with
Figure 13.7 above), we can also check protected areas (conservation lands). The
World Database on Protected Arecas (WDPA) from the UN World Conservation
Monitoring Center provides a global-scale portrait of lands that are least likely to be
occupied by urban settlement (WDPA, 2006). We are in the process of overlying the
WDPA map atop the eight global urban maps to identify potential urban commis-
sion errors (areas incorrectly labeled as urban). The added benefit of an approach
that draws upon WDPA is that it will provide the conservation community with an
assessment of the degree of land degradation within existing protected areas, an
attribute of considerable concern (Rouget et al., 2006). More than 90% of our cit-
ies and much of their peri-urban hinterlands are present within the high-resolution
GE archive, making GE a potential accelerator of searches for these omission and
commission errors. Preliminary research on the geospatial accuracy of the high-
resolution GE archive indicates that it is sufficiently accurate for use in assessing
these global maps (Potere, in preparation).

Thus far, we have described point-based assessment procedures, where we search
for urban omission and commission errors within a sample of point locations. A
second line of assessment involves estimation of map agreement statistics between
medium-resolution (30 m) Landsat-based city maps and each of the eight global
maps. For each of the cities in the samples of Angel et al. (2005) and Schneider
and Woodcock (2008), we downsample the coarse-resolution global urban maps to
30 m, overlay them atop the Landsat validation maps, create contingency tables,
and process these contingency tables to produce the six measures of map agree-
ment from Table 13.4b for each city-map combination. Figure 13.12 contains box
plots for the distribution of agreement measures, using the 120 city maps of Angel
et al. (2005) as validation data; as before, values approaching 1.0 indicate higher
agreement. For the most robust measures of overall agreement (kappa, NMI, and
TSS), the MODIS-based maps (MOD500 and MODIK) appear to be in signifi-
cantly stronger agreement with the Landsat validation data than the other six maps.
The asterisks adjacent to HYDE3 and IMPSA indicate that we used thresholded
versions of these continuous maps, where all pixels with more than 50% impervi-
ous surface were labeled as urban. A more complete analysis is ongoing, which
will explore the accuracy distributions associated with a wide range of thresholds
for HYDE3 and IMPSA.

Because the bottom row measures in Figure 13.12 (sensitivity, specificity, and
overall map accuracy) are influenced by the overall extent of the maps in ques-
tion, it is important to interpret them together; in this respect, they are unlike the
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overall measures of agreement from the top row (kappa, MNI, TSS), which can be
considered alone. For instance, in part because GRUMP is by far the most extensive
map, it has very high sensitivity, indicating that it rarely omits urban pixels; how-
ever, GRUMP also has quite low specificity, meaning that it often makes commis-
sion errors. These commission errors draw down the overall accuracy of GRUMP.
Because the global urban maps are arranged from least extensive to most extensive
(top to bottom, Figure 13.12), a trend is apparent where those maps with higher
overall extent (i.e., MOD500, MODIK, and GRUMP) have higher sensitivity than
those maps with lower overall extent (i.e., VMAPO, GLCO00, and GLOBC). An
inverse trend is apparent with regard to specificity. Although sensitivity, specificity,
and overall accuracy can sometimes provide important information, this trade-off
between omission and commission errors is one of the principal reasons behind
measures from the top row of Figure 13.12, which consider all aspects of the con-
tingency table.

This map assessment should be taken only as a useful first glimpse into the
accuracy of global urban maps. The assessment is ongoing, and we are work-
ing to address limitations with regard to the adequacy of the validation sample,
geolocation errors, and temporal mismatch. With regard to the former, our sample
is biased in that we omit cities of less than 100,000 persons; this omission is worri-
some considering that 26% of the global urban population may live in these areas.*
We are working to increase the number of cities by including those from a recent
assessment of urban expansion (Schneider and Woodcock, 2008) and using imagery
from GE. The GE imagery may also be beneficial in providing us with a source of
validation data to improve our accuracy assessments for the medium-resolution city
maps, allowing us to weight the distributions in Figure 13.12 by the accuracies of
the underlying Landsat-based validation maps.” The map agreement measures may
also be sensitive to small geolocation errors that are not evident on gross inspection;
only by testing accuracy with small shifts to the underlying validation data can we
eliminate these potential biases. Finally, there are temporal concerns for both the
global urban maps and the validation data; many of the input data for the global
urban maps span the late 1990s to 2005, the Landsat validation maps range from
1997 to 2003, whereas the GE imagery rarely indicates the image acquisition date.
Because urbanization is rapid in some regions of the world (e.g., China and parts
of Southeast Asia), a difference of only a few years can bias estimates of omission
and commission error rates. In our current work, we are attempting to balance these
concerns to present a robust analysis of the eight global urban maps across spatial
and temporal resolutions.

* The total population in the Angel et al. (2005) universe of cities of 100,000 persons or more for the
year 2000 was 2.12 billion, and the UN Population Division estimate for the total urban population
(regardless of city size) in 2000 was 2.86 billion — a 26% difference.

# Although the original Angel et al. assessment indicates an 89.2% overall map accuracy for their
Landsat maps, this assessment was confined to 10% of the maps. Ongoing research indicates that GE
high-resolution imagery is of sufficient spatial accuracy to be of use in assessing medium-resolution
Landsat imagery (Potere, in preparation).
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13.6 DISCUSSION AND CONCLUSIONS

As both recipients of ecosystem services and modifiers of ecosystem processes,
humanity is an important part of the biosphere. To better understand the role humans
play in ongoing global change processes, there is a need for a global, accuracy-as-
sessed, moderate-resolution, and regularly updated map of contemporary human
settlement. Global urban maps can make an important contribution here, by account-
ing for the residences of more than half of the human population. To meet this need,
eight international groups from government and academia have created global maps
that can be used to describe contemporary urban areas (Vector Map Level Zero,
Global Landcover 2000, GlobCover, HYDE3, Global Impervious Surface Area,
MODIS Urban Land Cover 1 km, MODIS Urban Land Cover 500 m, and GRUMP).
Such maps are of significant interest to a wide range of users, including regional
and national planners, disaster management specialists, humanitarian and develop-
ment aid coordinators, epidemiologists and public health officials, demographers,
economists, conservation biologists, climatologists, and urban ecologists (Potere and
Schneider, 2007).

Despite the considerable resources allocated to the task of creating global
urban maps, this chapter has revealed that the eight maps differ by as much as
an order of magnitude in their estimates of the total areal extent of the Earth’s
urban land (0.27-3.52 million km?). Differences in these eight maps persist at
the scale of urban patches, countries, and world regions. To better visualize these
maps and to conduct a quantitative map comparison, we used a hexagonal system
of DGGs. An analysis of the spatial distribution of urban land based on these
DGGs across a wide range of spatial resolutions (29-264 km) has revealed that
intermap correlations are highest in North America (r = 0.83), lowest in Asia
(r = 0.66), and intermediate in Europe, South and Central America, and sub-
Saharan Africa (r= 0.79). It seems that large intermap differences are driven
by a combination of several factors, including differences in the timing of map
construction, differences in map resolution and class enumeration, and funda-
mental differences in each group’s approach to urban land. Scale and resolution
are of concern because many of these maps combine coarse-resolution inputs
with binary classifications (urban/nonurban classes). Because urban land does
not occur in neat 30” arc-second square blocks, there are considerable problems
inherent in any attempt to infer total areal extent from coarse-resolution binary
classifications (Latifovic and Olthof, 2004; Ozdogan and Woodcock, 2006).

Of the aforementioned sources of intermap variance, perhaps the most impor-
tant is a fundamental divergence in each group’s approach to defining and modeling
urban land. The problem of creating a meaningful and workable characterization
of “urban” is not trivial. In the absence of a clear set of definitions, each group
constructs an implicit model of urban extent that can be inferred from their meth-
odologies. The eight global urban maps that emerge are sensitive to many attributes
commonly associated with urban areas, including high population density, extensive
built environment, nighttime illumination, and proximity to transportation infra-
structure. The degree to which any one of these attributes contributes to an urban
classification is likely regionally dependent and is not specified by any of the makers
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of these maps. We can do better if progress can be made toward synchronizing
legends and negotiating a common set of multifaceted urban definitions that draw on
both the demographic and the physical dimensions of urbanization.

The only way to truly understand the source and impact of the large intermap
differences is to conduct a global map accuracy assessment. In Section 13.5, we report
initial findings from an ongoing assessment, which indicate that the MODIS-based
maps are in stronger agreement with the assessment data than the other six global
urban maps. We also find that only three maps avoid omitting any of the 120 assess-
ment cities (MODIS Urban Land Cover 500 m, HYDE3, and Global Impervious
Surface Area). This assessment is a first step toward building a better understanding
of the global urban fabric. Future assessments based on larger sets of validation data
will allow us to make more meaningful statements about regional map accuracy, geo-
registration, and the underlying models of urban extent implicit within each global
urban map. In the longer term, an improved understanding of each map’s strengths
and weaknesses in both space and time will facilitate the construction of a suite of
composite urban maps that are tailored to particular user groups. We could address
the specific needs of users by first devising a group-specific definition of urban areas
(either ordinal or categorical), and next fusing components of existing global urban
maps and urban-related maps that best meet the requirements of those definitions.

The human built environment is complex, and no single binary definition of the
urban/rural divide is likely to satisfy the demands of a growing user community.
With more than two billion new urban residents due to arrive within the next quar-
ter century, there can be little doubt that a new series of urban maps is on the way.
Whether those maps are more successful at capturing the complexities of urban
areas depends on how effectively we engage the multidisciplinary community of
map users and map producers to resolve the fundamental issue of urban taxonomy
and agree on a common map assessment regime.
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14.1 INTRODUCTION

Urban areas represent a very complex environment in terms of shape and number of
different materials and patterns found in the widest “urban” land cover class.

Remote sensors to be used for the analysis of the urban environment are subject to
strict requirements with respect to spectral and spatial resolution, as well as to their
capability to handle the third dimension.

Synthetic aperture radar (SAR) sensors seem to possess all the necessary features
to qualify as a suitable candidate, including the three-dimensional (3-D) capabilities
granted by the interferometric version of SAR (InSAR). The SAR community has
indeed been gaining increasing importance in the urban remote sensing scenario,
as testified by a scanning of the papers presented in the various editions of the
URBAN conference.

In this chapter, the use of SAR in the urban environment is briefly recalled from
an historical perspective, then some current, important fields of application are out-
lined in the following subchapters. Finally, several conclusions are drawn.

14.1.1 HistoRrICAL EVOLUTION AND SCENARIO

SAR sensors have been long reputed as unsuitable for precise characterization of
the urban environment, and even today very high resolution (VHR) optical data are
considered somehow mandatory for efficient and reliable land use mapping. Besides
the very first works on SEASAT images, the seminal papers in applying SAR sen-
sors to urban environments appeared in 1990. Later, a more extensive introduction

309
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of SAR sensors into remote sensing techniques over urban areas was to appear.
This was represented by a special issue of the IEEE Transactions on Geoscience
and Remote Sensing in 1997. Henderson and Xia’s (1997) review of those articles
showed that much remained to be done in the direction of a better automatization
of the analysis process. From that point on, many papers appeared that mainly
exploited the possibility of capturing the geometrical features that are peculiar to
man-made structures. For instance, textural features have been widely considered,
because they allow evaluation of spatial correlations between urban objects. As for
the future, recent reviews of SAR urban remote sensing, proposed in three special
sessions — two in EUSAR ‘06 (EUSAR, 2006) and one in IGARSS ‘06 (IGARSS,
2006) — show a big stress on high-resolution (HR) SAR data, possibly in conjunc-
tion with optical data, and the use of interferometric information for 3-D analysis
of the urban environment.

Unfortunately, satellite SAR sensors have achieved only recently very fine spa-
tial resolution. At the time of writing, TerraSAR-X images have just seen the
start of their distribution, whereas those of RADARSAT-2 and COSMO/SkyMed
have not been distributed yet, with the exception of a few sample images under
the form of “fine quick-looks,” which are of little use for research purposes.
Therefore, another very active line of research today is the use of available,
low-resolution (LR) satellite SAR data for mapping the structure of urban areas.
The huge amount of past SAR imagery carries a wealth of information about
the evolution of urban areas still to be fully exploited. Moreover, enlarging the
research view from urban areas in a strict sense to “human settlements” opens
a whole new panorama of applications and possibilities. The arguments against
using former SAR data for these applications are related to the insufficient spa-
tial resolution of data and the unstructured character of most human settlements.
Both problems deserve attention, but recent approaches have shown that they
can be eased by means of more precise spatial pattern analysis of SAR data and
data fusion.

The most important advantage of SAR over optical images is related to the com-
plex nature of the radar signal. By exploiting this feature, it is possible not only to
improve knowledge about the backscattering properties of the urban material thanks
to the information carried by the phase of the signal, but also to extract 3-D infor-
mation by means of the so-called InNSAR (Gens and Van Genderen, 1996). SAR
interferometry has a number of different applications in urban areas, ranging from
subsidence monitoring (Ferretti et al., 2000) to the characterization of 3-D builtscape
(Gamba et al., 2000). A comparison of airborne and satellite systems for 3-D urban
analysis (Gamba and Houshmand, 2002) has shown that C-band and X-band data
have very similar responses from man-made structures but show differences in veg-
etated areas, which may be useful for mapping purposes and for discrimination of
these two land uses in 3-D maps. Moreover, SAR coherence has been widely consid-
ered in urban areas because of their peculiarity of containing many strong and long-
lasting backscatterers. As a result, in urban areas the typical coherence is usually
much higher than in agricultural fields and forestry (Usai and Klees, 1999), unless
some dramatic change in the observed objects takes place. Thus, coherence has
been used to map human settlements (Dammert et al., 1999), to assess damage after
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Earthquakes (Yonezawa and Takeuchi, 2001) and for change detection (Dierking and
Skriver, 2002).

Long sequences of SAR data are also useful for urban area monitoring. The per-
manent scatterers technique (Ferretti et al., 2000) allows users to sense tiny, slow
vertical motion for elevated objects naturally including urban and other man-made
structures. This technique is widely used for monitoring of subsidence movements
and is naturally of considerable interest for analyzing factors of risk (deformation,
collapse, sinking) connected to slow vertical motion of the terrain underlying urban
areas. Several-year-long sequences can correct for disturbing factors causing decor-
relation (De Zan and Rocca, 2005) and provide extremely precise measurements.
Long sequences fused with geographic information systems are also useful, as
shown by Gamba et al. (2008), in improving the accuracy of classification in urban
areas, especially with respect to urban sprawl monitoring.

Finally, polarimetry is becoming increasingly important for new SAR systems,
because the availability of multiple polarization allows users to discriminate among
the various backscattering mechanisms that take place in urban areas. As a con-
sequence, different building structures may be recognized (Dong et al., 1997).
Polarimetric interferometry is also starting to provide 3-D information from a single
polarimetric sensor, further enhancing our ability to reconstruct building informa-
tion using radar data.

The new generation of satellite sensors, featuring a level of resolution comparable
with that of VHR optical satellites but offering coherent backscattering evaluation as
a bonus, will enable a detailed analysis of urban areas, and polarimetric capabilities
will push further the analysis capabilities by providing more means to distinguish
different building patterns and urban land cover classes.

In the following sections, we will show several examples of how SAR data can be
fruitfully used for detection, delineation, and in-depth analysis of human settlements.

14.2 HiGH-ResoLuTiON OBSERVATION OF HUMAN SETTLEMENTS

The use of SAR systems to observe human settlements is a recent addition to the tech-
nical literature in Earth observation. Long after SAR was introduced, the possibility
of using such sensors for urban area observation was first proposed in a systematic
fashion by Henderson and Xia (1997) and in other papers in the special issue. Since
then, a number of papers have appeared that invoked HR SAR as a requirement for
an in-depth analysis of urban areas.

Nowadays, the successful launch of low Earth orbit satellites, such as the German
TerraSAR-X (Roth, 2003) and the Italian COSMO/SkyMed (Impagnatiello et al.,
1998), is about to open a new possibility to researchers, whereas Radarsat-1 (Weydahl
et al., 2003) fine mode and ALOS PALSAR (Rosenqvist et al., 2004) data provide an
intermediate step towards fine-resolution observation of human settlements.

When one moves from ERS (European Remote Sensing)-like spatial resolutions
(30 m) to about 7 m, which is the common value for the two latter instruments, a
number of new issues arise. First of all, human settlements reveal their nonhomo-
geneity, and even different parts of the same objects tend to act — and appear —
as separate-response scatterers. This adds to the traditional unreliability of pixel
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digital numbers (DNs) in a coherent radar image, and as a result no approach based
on pixel-by-pixel analysis is capable of suitably handling this variety of possible
responses within the same land cover class. Segmentation approaches are more
likely to succeed (Lombardo et al., 2003) and can be based either on statistical
(Macri Pellizzeri et al., 2003) or spatial (Dell’Acqua and Gamba, 2003) analy-
sis. The latter approach has a more immediate meaning and is directly related
to the spatial structure of the settlement, which is one of the basic indicators of
its usefulness. It has been shown that formal and informal settlements differ by
the “order-versus-disorder” appearance in remotely sensed images (Niebergall et
al., 2007), and different land uses can be discriminated even using coarser data
(Dell’Acqua and Gamba, 2006), with a feasible scale-adaptive approach. In the
following subsections, two representative examples of urban observation derived
from HR SAR data are discussed.

14.2.1 EXTRACTION OF SINGLE BUILDINGS

Although satellite HR SAR data still have a limited availability, HR airborne SAR
has allowed developing techniques, which prepare the ground for the exploitation of
future satellite data. Three-dimensional building recognition (Thiele et al., 2007) is
a typical application, which becomes feasible when such data are available instead
of traditional LR satellite data.

SAR and InSAR data have been exploited in city cores with high-rise buildings
(Gamba et al., 2000), rural areas, and industrial plants (Simonetto et al., 2005). These
techniques still show limits, especially when compared with the expensive LIDAR
data (Stilla et al., 2003).

A first reason for the nonfavorable situation of SAR is obviously its side-looking
nature, which results in phenomena such as foreshortening, layover, occlusion, total
reflection, and multibounce scattering. All these phenomena are found also in natu-
ral scenes, but are made far more dramatic by the typical features of the urban envi-
ronment, rich of smooth (with respect to wavelength), planar patches often at right
angles with each other (resulting in corner-cube-like reflection) or parallel to each
other (resulting in several bounces of the incident electromagnetic wave).

Depending on the viewing direction, acquisition of large parts of an urban scene
can be plagued with these phenomena (Dong et al., 1997); regions of radar shadow
(e.g., cast behind buildings) coincide with noisy InSAR elevation data. One may get
around such obstacles by acquiring SAR data from different vantage points and fus-
ing interpretation results (Soergel et al., 2005).

14.2.2 INFORMATION FusioN witH LIDAR Data

Another sensor especially useful in urban areas is LIDAR (light detection and rang-
ing). Its use has gained support, thanks to its suitability for precise 3-D mapping of
urban areas, where precision is required in characterization of building footprint
location and delineation, height, and in recognition of fine details. LIDAR systems
exploit the light reflected by the Earth surface illuminated by a laser source to form
a 3-D model of the surfaces seen by the sensor.
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InSAR and LIDAR data are both interesting for urban area characterization, and
their combination is even more so. SAR data can be easily acquired on a much wider
area and at a lower cost per square kilometer than LIDAR data, thanks to spaceborne
systems; on the other hand, LIDAR data are less subject to distortions, due to the
nadir-looking nature of the sensor, and feature finer ground spatial sampling.

An interesting way to combine LIDAR and InSAR data is to use LIDAR to
reduce artifacts in InSAR 3-D characterization of buildings inside an urban area.
Comparison between the data in a small portion of the SAR data where LIDAR
information is available may suggest a correction procedure, which can be extended
to the whole radar image. A possible algorithm, described in more detail by Gamba
et al. (2006a), is recalled here as an example of how some of the most undesirable
features of InSAR data in urban areas may be overcome through data fusion.

Whenever a SAR instrument images an elevated object, such as a building, a
displacement of each building footprint in SAR data toward the sensor takes place,
due to the side-looking nature of the radar, together with 2-D and 3-D distortion of
the same footprint due to layover and/or shadowing effects. One could exemplify all
these problems via a nonlinear transformation that translates the original footprint
into a displaced and deformed one. This transformation is a function of the radar
illumination angle 0, the structure orientation ¢, and height 4, and the terrain slope.
This nonlinear transformation may be reduced to a planar transformation in areas
where the buildings share roughly the same features. In this situation, jointly apply-
ing a footprint shift and a stretching step would be enough to restore the original
footprints. The processing chain in the above-mentioned work (Gamba et al., 2006a),
basically a procedure of data fusion between InSAR and LIDAR data, is composed
of the following steps:

1. Extraction of the Digital Terrain Model (DTM) and the building
footprints;

2. Shifting of the buildings to correct side-looking effects;

3. Reduction of the area mismatch due to layover/shadowing by means of a
geometrical correction of InSAR footprints;

4. Improvement of the InSAR 3-D building shapes by masking the height val-
ues using the relocated and geometrically corrected footprints.

By applying this technique, the overall InSAR builtscape in the urban area improves,
and further regularization algorithms may be applied to extract the 3-D shape of
each building.

14.3 LR SAR OBSERVATION OF HUMAN SETTLEMENTS
14.3.1 DAMAGE AssessMenT wiTH LR SAR

When dealing with a single SAR image, the sheer number of different backscatter-
ing measurement results in HR images and places the conveyed amount of informa-
tion above that of any LR SAR image. However, the situation may change when a
large number of LR images are considered, because a set of such images can also
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lead to very interesting results, especially if the phase/interferometric information
is exploited. Let us consider a particular change detection problem for which the
latter condition is especially relevant, that is, Earthquake damage assessment in LR
SAR data.

Two main research approaches have been explored in this field: one is to con-
sider the decorrelation due to the change in orientation of strong scatterers (Usai and
Klees, 1999), and the other tries to detect backscatter intensity changes due to the
geometric deformation of damaged buildings.

Damage assessment using coherence was proposed by Yonezawa and Takeuchi
(2001), who compared interferometric coherence and intensity correlation. The
proposed approach relied on interferometric processing; although this option is
somewhat “delicate” in that, for example, multisensor SAR interferometry is often
impossible, and phase information is highly dependent on the acquisition geometry,
damage mapping through coherence may allow more precise discrimination among
different damage levels, due to the highest sensitivity of coherence to geometric
changes.

A more robust approach to damage assessment is to use SAR intensity data,
explored and discussed by Matsuoka and Yamazaki (2004). Indeed, the authors
showed that intensity measures are more reliable, and through a suitable choice of a
discriminating function, it is possible to map the affected and unaffected areas with
higher reliability. The presence of speckle noise suggested to apply a despeckling
filtering step, and not to consider intensity at the pixel level, but rather in terms of its
statistics computed over a suitably sized neighborhood of the location under test.

Unfortunately, some form of degradation in terms of spatial resolution is to be
expected when processing SAR images, because of the necessity of having to deal
with the problem of speckle noise through some form of averaging or statistical
feature extraction over local neighborhoods. Naturally, this is a more remarkable
handicap for LR SAR, as geometrical clues in HR SAR remain detectable not with-
standing speckle, whereas radiometric analysis more suitable for LR SAR is more
heavily impaired by this phenomenon.

Although most papers share the conclusion that LR SAR data may be useful for
damage mapping, an accurate damage-mapping tool is still far from being fully
developed. However, two points are worth stressing for multitemporal SAR data
analysis in this field. Coherence and intensity are two different, not so tightly related,
sources of information; moreover, the same measures only allow damage mapping at
a scale comparable with the window used for their computation.

Intensity and coherence are jointly considered, and show how their combination
may provide better results, as in the work of Gamba et al. (2007), by also incor-
porating the awareness of spatial relations among nearby backscattering areas on
the ground, because these relations are necessary to correctly perform the damage
assessment task.

14.3.2 Low ResoLuTioN, OBJECT ScALEs, AND URBAN AREA MAPPING

The scales of urban features may be very different, and even for classification purposes
they depend on the level of land cover/land use that one is seeking to discriminate
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(Woodcock and Strahler, 1987). It is thus of paramount importance to find the best
combination of datasets, feature manipulation techniques, and interpretation/classi-
fication procedures for a given scale of interest. SAR data provide information about
scatterers in an area and this information is also important to discriminate among
different parts of the same urban areas by recognizing different scattering patterns.
This approach was proposed by Dell’Acqua and Gamba (2003), who analyzed single
date and multitemporal ERS data to detect the city center, residential areas, and the
outer sparsely built zones. The idea is based on the use of co-occurrence matrix
texture measures. A similar method was proposed by Dekker (2001), using other
textures for the same purpose.

Key references in the issue of scales in remote sensing images are Quattrochi
and Goodchild (1997) and Marceau and Hay (1999). In particular, Marceau and
Hay (1999) introduce an interesting connection between remote sensing and geo-
graphical entities. It is shown that the issue of scales in remotely sensed images
may be seen as a modifiable area-unit problem. In this framework, the proposed
methods may be reduced to optimal spatial zoning systems, approaches based
on geographical entities, algorithms based on spatial statistics, and procedures
for analyzing relationships among results, variables, and scales. More recently,
the same problems have been addressed by Atkinson and Aplin (2004), who
showed that a single scale is an excessive simplification when characterizing
objects in a remotely sensed image. Further investigation in the same field, that
is, the possibility of using different textures and/or different scales to improve
the classification results in urban area mapping, is proposed by Dell’Acqua and
Gamba (2006).

An accurate texture-based discrimination of land use/land cover classes needs,
for instance, the computation of multiscale textural features for a wide range of
parameters of the co-occurrence algorithm.

In the cited paper, a technique is proposed to reduce the full multiscale
feature set to the most suitable subset for a classification using a fuzzy ARTMAP
neural network. This is done by analyzing the relevance of each feature for this
particular classifier via the Histogram Distance Index, which is a measure of the
separation between the various features performed through a joint evaluation
of their histograms. The procedure is validated on the urban test site of Pavia,
for which the authors own a very accurate ground truth map, and the results
appear encouraging, showing that characterization of an urban environment
can be improved by using multiscale textural features extracted from satellite
SAR data.

A big issue of urban mapping — again, related to scale — which is still to be
solved satisfactorily, is connected with the precise, accurate location of the urban
area boundaries. Conflicting requirements push, on one hand, for the consideration
of smaller classification units in order to achieve a better resolution in the classifica-
tion map, whereas, on the other hand, reliability of local statistics and texture mea-
sures pull toward larger computation windows. This has to be addressed for LR data
if, for example, historical urban mapping is the objective, as scaling down spatial
resolution of the data means zero availability of historical data, except for a few sites
where airborne acquisition has been previously conducted.
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14.4 CONCLUSIONS AND FUTURE PERSPECTIVE

In this chapter, a number of aspects concerning the exploitation of SAR data in the
analysis of urban areas have been discussed, and some concrete examples of SAR
data processing over urban areas have been presented, considering both HR and
LR data.

The trends that may be inferred from a scanning of the literature —including, in a
broad sense, plans of various space agencies — and from our personal experience, are
exposed in the following few points, from sensor-oriented to processing-oriented:

1. Improvement of the sensor resolution. This is a specific aspect of a general
trend, independent of the particular application at hand. The interesting
consequence is an increasing availability of spatially detailed measure-
ments: this will increasingly expand the use of satellite (In-)SAR data into
sectors that used to be restricted to airborne sensors, such as modeling of
single buildings, or — more, generally — 3-D information extraction, with
the bonus of repeatability.

2. Improvement of acquisition frequency and, above all, of effective data deliv-
ery time. Constellations of satellites seem to be the new standard for future
systems, because placing more alike satellites means not only reducing the
time required to deliver an image, but also improving the overall reliability
(the ability to deliver an image at all) — although, for time-critical applica-
tions such as disaster alerting and monitoring, even in the best cases one
still has to wait long (not less than 72 hours in realistic estimates) to receive
the data on his/her desk. On top of it all, there’s still the processing time to
add to the time lapse between the moment a disaster occurs and the time
the first results are made available. Paradoxically, with the advancement in
automatic processing techniques — and in processing speed — the time
required to deliver images is projected to become the most limiting factor
in emergency applications.

3. Fusion of HR SAR and HR optical data, to make each type of data fill in the
other’s gaps. For example, severe geometric distortions in radar data may be
eased where near-nadir HR optical data are available, faithfully reproduc-
ing the shape of the objects. Conversely, height information may be more
easily extracted from radar shadows than from nadir HR optical data.

4. Recovery of historical archives to study long-term evolution of urban areas.
The series of ERS and ERS-like instruments (currently, ENVISAT ASAR)
have been in operation since 1991 and noncontinuous, earlier acquisitions
are also available thanks to, for example, Shuttle radar missions. This
means that by using suitable, ad hoc land cover classification techniques,
an approximate and roughly time-seamless “urban map” could be extracted
from LR SAR data covering nearly 20 years of urban evolution in any
selected location on Earth. An advantage of such an approach with respect
to worldwide nighttime light map — besides finer resolution and all-weather
capability — is that urban areas impose a clearer mark on radar data than on
nighttime light map; for example, public illumination level depends strongly
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on the wealth of the country/city at hand, whereas the presence of geometric
features favorable to strong radar backscatter phenomena is practically
guaranteed in any case, regardless of the different building criteria in dif-
ferent countries.

As a final remark, we may conclude that SAR sensors may cover a large set of
information needs regarding urban areas, both in terms of static, one-shot acquisition
and in terms of monitoring the evolution of phenomena, and the forthcoming refine-
ment of spatial and (maybe even more important) time resolution will open up a whole
new world of possibilities in this sense. The scientific community is expected to con-
tribute to the improvement of information extraction procedures even earlier than the
actual availability of such products, relying on simulated and airborne data.
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15.1 INTRODUCTION

In its report entitled “State of the World Cities 2006/2007” (United Nations, 2006),
the United Nations predicted that the number of urban dwellers worldwide will rise
to almost 5 billion by 2030, or 62% of the estimated global population of 8.1 billion.
Cities and urban areas will have to expand to accommodate such increases in popula-
tion, resulting in a variety of social and environmental problems. The corresponding
and rapid development and changes in cities and urban areas make timely, accurate,
and low-cost spatial information necessary for formulating and monitoring social,
economic, and environmental issues that arise in response to increasing population
pressures. The synoptic view and the repeatability afforded by Earth observation
(EO) sensors offer great potential for the collection of information over urban areas
(Small, 2001).

321
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The launch of the first EO satellites more than 35 years ago brought about a major
paradigm shift from the use of film-based to digital data, and more recent tech-
nological advancements have included the developments of high spatial and spec-
tral resolution sensors and of multisensor systems. These are accompanied by other
advances: (1) improvement in computer speed and graphics capability which, accord-
ing to Moore’s law, doubles every 18—24 months (Moore, 1965); (2) developments in
Global Positioning System (GPS) and inertial navigation system (INS) technology,
which enable operators to fix the position and attitude of sensors more accurately; (3)
improvements in communications and spatial data infrastructure, which enable effi-
cient handling and distribution of enormous volumes of data; and (4) new software
enabling faster and more reliable information extraction. These developments have
allowed considerably more data from a greater range of sensors to be collected, and
have significantly advanced the potential applications of EO data (Ehlers, 2004a).

Of special importance for urban applications is the spatial resolution required to
capture fine details from complex urban environment composed of typically small
features. The spatial resolution of 0.5-5 m suggested as the required resolution for
accurate urban feature extraction (Welch, 1982; Konecny et al., 1982; Cowen and
Jensen, 1998) was first achieved by spaceborne platforms in 1999 with the launch of
the first commercial very high resolution (VHR) EO satellite by Space Imaging (now
part of GeoEye) with 1-m (panchromatic) and 4-m (multispectral) image channels.
An ever-increasing number of satellites with similar or even better spatial resolution
have been launched or is being planned for the near future. These satellites are being
developed and launched not only by the longtime industrialized countries, but also
by newly industrialized and emerging nations. This chapter tries to look at these
developments from a global application perspective.

15.2  TAXONOMY OF REMOTE SENSING SYSTEMS

In general, remote sensing (RS) can be broadly defined as the art, science, and tech-
nology of obtaining reliable information about physical objects and the environment,
through the process of recording, measuring, and interpreting imagery and digital
representation of energy patterns derived from noncontact sensors (Colwell, 1997).
Over the past years, discussions have largely centered on the spatial resolution of
new RS systems. However, as important as this parameter is, a number of parameters
are also being used to characterize and classify RS systems.

RS has come a long way from its aerial photography and image interpretation
origins. Electromagnetic wavelengths used by RS systems have been extended from
the visible light to the near-infrared, thermal infrared, and the microwave domains.
Remotely sensed information is recorded by digital sensors onboard satellite plat-
forms. Sensors can passively record emitted or reflected radiation from the Earth’s
surface, as in the case of optical systems, or act as their own energy source in an
active mode, as in Radar and LIDAR (light detection and ranging) systems. Optical
images can be acquired as panchromatic (1 band), multispectral, or even hyperspec-
tral data depending on the type of sensor used. One might also discuss the ques-
tion of remoteness and look at the recording platform for sensor differentiation.
Remotely sensed information is recorded by digital sensors onboard satellites as well

© 2009 by Taylor & Francis Group, LLC



Future EO Sensors of Relevance 323

as airborne platforms. For ground truthing, ground-based (stationary) RS platforms
(e.g., boomtrucks) are used for measurements that still qualify as RS. Which way is
chosen to categorize an RS system depends mainly on the application range and the
background of the scientists involved. In the absence of standard rules governing the
classification of sensors based on the above parameters, Ehlers (2004a) used the clas-
sification scheme shown in Table 15.1 to propose a taxonomy for RS systems.

15.3 VERY/ULTRA HIGH RESOLUTION SATELLITE SENSORS

The advent of commercial satellite programs with very and ultra high resolution
(i.e., 1 m and better) has opened new application fields for space-based RS. Satellite
data offer the potential for large-scale applications such as urban planning and envi-
ronmental monitoring at the highest level of detail (Ehlers et al., 2008). Spatial
resolutions of 0.50-1.00 m (panchromatic) and 2.50—4.00 m (multispectral) from
spaceborne sensors have begun to challenge aerial photography as a cost-effective
data acquisition alternative.

Companies such as Digital Globe (http://www.digitalglobe.com/) or GeoEye
(http://www.geoeye.com/) promise extremely fast processing. Data are typically
delivered within days of recording (or even hours, if downloading via Internet is pos-
sible). Tiltable cameras and satellites offer short revisit periods of 2-3 days, making
near-continuous data acquisition possible, and across-track as well as along-track
stereo capabilities. Launched in September 1999, the Ikonos II was the first commer-
cial VHR satellite in orbit (see Table 15.2). Figures 15.1 and 15.2 show the level of
details provided by the panchromatic Ikonos and QuickBird sensors. The potential
of these sensors for urban application is demonstrated by the resolution of clearly
discernible individual buildings in these images.

TABLE 15.1
Taxonomy of Remote Sensing Systems (after Ehlers 2004a)
Recording Satellite/Shuttle Aircraft/Balloon Stationary
platform
Recording Passive (visible, near-infrared, thermal Active (laser, radar)
mode infrared, thermal microwave)
Recording Analog (film camera, video) Digital (Whiskbroom, line array, 2-D
medium charge-coupled camera (CCD))
Spectral Visible/ultraviolet Reflected infrared ~ Thermal infrared ~ Microwave
coverage
Spectral Panchromatic Multispectral Hyperspectral Ultraspectral
resolution 1 band 2-20 bands 20-250 bands >250 bands
Radiometric Low (<6 bit) Medium (6-8 bit)  High (8-12 bit) Very high (>12 bit)
resolution
Spatial Very low Low Medium High Very high  Ultra high
ground >250 m 50-250 m 10-50 m 4-10m 1-4m <lm
resolution
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FIGURE 15.1 Ikonos image with a spatial resolution of 1 m. (Image courtesy of GeoEye.)

New VHR satellites that were launched in 2007 or will be launched in 2008
include the first Radar sensor with a spatial resolution of 1 m. Currently, the highest
spatial resolution provided by spaceborne sensors is Digital Globe’s Worldview 1
(panchromatic only) with about 50 cm resolution (Table 15.3). Although GeoEye-1,
launched in early 2008, will produce panchromatic images with a nominal resolution
of 41 cm, the general public will only be able to purchase images with a degraded
resolution of 50 cm. Although GeoEye-1’s spectral characteristics resemble those of
QuickBird and Ikonos, Digital Globe’s WorldView 2 (to be launched no later than
2008) will offer four additional bands for coastal monitoring (coastal and yellow)
as well as a red edge and a second near-infrared band. In 2007, Infoterra (http:/
www.infoterra.de/) and Germany’s Aerospace Center, DLR, launched the world’s
first 1-m resolution Radar satellite TerraSAR-X, which offers day and night as well
as bad-weather EO capabilities. Another interesting development is the Rapideye
five-satellite constellation, which is scheduled for a simultaneous launch in 2008
(http://www.rapideye.de/). At slightly coarser than VHR spatial resolution (6.5 m),
the constellation’s multispectral sensors will provide large-area coverage on a daily
basis, weather permitting. It must be noted that this overview provides only a few
selected examples; for a complete description of VHR and HR space sensors, see
Ehlers et al. (2009).
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FIGURE15.2 QuickBirdimage withaspatial resolution of 0.7 m. (Image from DigitalGlobe®.
With permission.)

15.4 DIGITAL AIRBORNE SENSORS

After a long period of development, the emergence of operational digital camera
systems has challenged aerial frame cameras as EO data source for large-scale map-
ping. Advanced technologies such as GPS-coupled navigation systems and advanced
digital sensor technologies have overcome the strongest deficiency of aircraft scan-
ners: the lack of geometric stability. In response, public and private research has
concentrated on the development of digital line array or matrix scanners that serve as
successors to the “classical” aerial cameras. Companies such as Leica Geosystems,
Intergraph’s Z/1, and Microsoft’s Vexcel are providing the first commercial systems
for these types of sensors; research centers such as DLR fly their own prototypes.
Such systems have to establish their market somewhere between the satellite image
user seeking higher resolution and the air photo user seeking digital input and GIS
compatibility. Consequently, airborne scanner systems have to offer stereo capability
and multispectral recording.

Two different technologies are being used to accomplish an airborne digital
recording system. Z/I Imaging and Vexcel make use of two-dimensional (2-D) arrays
and a set of coupled nadir-looking lenses to emulate a standard frame camera’s cen-
tral perspective (Dorstel, 2003; Leberl and Gruber, 2003). Leica Geosystems and the
DLR use triplet scanner technology with 1-D line arrays arranged in fore-, nadir-,
and aft-looking modes (Fricker et al., 2000; Hoffmann and Lehmann, 2000). The
advantage of a 2-D matrix camera is that all standard photogrammetric techniques
can be used in a digital environment and that forward motion compensation (FMC)
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can be achieved through time delayed integration. The advantage of a stereo triplet
solution is that photogrammetric preprocessing [i.e., digital surface model (DSM)
and orthoimage generation] is performed before the user receives the data, alleviat-
ing the user’s need to run sophisticated software. The image data are provided in
the required coordinate system and can be easily integrated into an existing GIS
database. Which of the two approaches is more suitable will largely depend on the
user demands and the price-performance ratios of the respective systems. Table 15.4
presents four selected ultrahigh resolution airborne digital camera systems.

The advantages of digital cameras are widely understood: no film, no photo pro-
cessing, no scanning, better radiometric quality through direct sensing, “non-aging”
storage, and direct integration into GIS and image processing systems. The disad-
vantages of digital scanners, most notably its geometric distortions and monoscopic
imaging mode, are overcome due to the stereo capabilities of the new sensors and the
use of integrated INS and differential GPS technology during image acquisition.

15.5 POTENTIAL FOR URBAN MONITORING

In a highlight article for Photogrammetric Engineering and Remote Sensing, Nichol
et al. (2007) outlined a set of requirements for EO sensors to be used for urban
planning and management. They identified four application areas: (1) environmental
monitoring, (2) land use/land cover (LU/LC) mapping, (3) planning, and (4) geotech-
nical monitoring. In the following, we will address the first three topics as they are
more closely aligned with the scope of this chapter.

15.5.1 ENVIRONMENTAL MONITORING

EO sensors have been used to study the magnitude and extent of urban heat islands
using thermal RS data (Streutker, 2003; Voogt and Oke, 2003; Nichol, 2005). Most
thermal images, however, are not collected at the most suitable times for analysis of
heat islands, which are best observed at night or even require a day- and a nighttime
temperature recording. Despite this, thermal images from satellites have been used
with some success for analysis of urban climates and can indicate heat mitigation
measures such as appropriate building geometry, materials, green spaces, and air
flow corridors (Quattrochi et al., 2000; Nichol and Wong, 2007). However, the spa-
tial resolution of the only thermal sensors with assured continuity (ASTER with 90
m and MODIS with 1000 m) are too low for sufficient microclimatic application. In
addition, the resolution discrepancy is too great to permit fusion with high-resolution
(HR) or VHR sensors. As there exist no plans for launching a thermal sensor in the
near future with a higher resolution, there will be no satellite missions suitable for
urban microclimate analyses (Nichol et al., 2007).

15.5.2 LU/LC CHANGE

LU/LC changes address not only the analysis of the urban areas but also the sur-
rounding regions as LU/LC changes there can impact the urban climate and envi-
ronment. Continuity of data acquisition for LU/LC change monitoring is essential
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TABLE 15.4

Digital Airborne Camera Sensors (after Watson and Ehlers, 2006)

Company DLR Leica Vexcel Corp. Z/1 Imaging

Geosystems
Sensor HRSC-AX ADS 40 UltraCam-D DMC
Sensor type Triplet stereo Triplet stereo 2-D CCD Camera 2-D CCD Camera
w. FMC w. FMC

Year of 2000 2000 2003 2002
introduction

Focal length 151 mm 62.7 mm 100 mm (28 mm 120 mm (25 mm

multispectral) multispectral)

Total field of view 29° 62.5° 55 % 37° 74 x 44°

Number of CCD 9 12 7500 (pan) 8000 (pan)
lines 2672 (ms) 2000 (ms)

Sensors per CCD 12,172 12 x 12,000 11,500 (pan) 13,500 (pan)
line (pan and ms) 4008 (ms) 3000 (ms)

Sensor size 6.5 um 6.5 um 9 um 12 pm

Radiometric 12 bit 12 bit 14 bit 12 bit
resolution

Spectral resolution 520-760 (pan) 465-680 (pan) 4 bands: blue, 400-850 (pan)

in nm 450-510 (blue) 428-492 (blue) green, red, 400-580 (blue)
530-576 (green) 533-587 (green) infrared 500-650 (green)
642-682 (red) 608-662 (red) 1 band pan 590-675 (red)
770-814 (nir) 833-887 (nir) 675-850 (nir)
Read-out 1640 lines/s 800 lines/s 0.75 images/s 0.5 images/s
frequency
Largest appl. 1:500 1:150
scale
Stabilization Z/NTT-AS LH platforms Not specified Z/T'T-AS
platform platform
Data recording Sony high-speed MM40 mass SCU >1 TB RAID hard disk
data recorder memory array
Georeferencing Applanix POS/ Applanix POS Not specified POS Z/1510
DG navigation IMU with GPS navigation
system with and INS system with
GPS and INS GPS and INS

because many cities update their LU/LC registries annually or as an ongoing pro-
cess, and the role of EO sensors for rapidly archiving and documenting these data
cannot be overestimated. Most LU/LC analyses make use of the Anderson land
cover classification system (Anderson et al., 1976) or a similar national/regional
system that accommodates several levels in its classification hierarchy and is
suited for automated classification techniques for medium- to high-level resolu-
tion sensors (Jensen, 2007). Determining LU/LC changes in urban areas, however,
requires VHR images for which fully automated classification techniques are not
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yet operational. Even with the development of knowledge-based classifiers and
object recognition and feature extraction methods, manual interpretation of aerial
photographs or VHR imagery is still the norm (Herold et al., 2003; Myint, 2006).
Screen digitizing on VHR images may provide some cost reduction over the use
of air photos, but does not present a desirable trend in the use of EO technology.
To automate the procedure of urban mapping, integration of GIS information and
RS data seems to offer huge potential (Stow et al., 2003), and data fusion methods
for the integration of VHR panchromatic images into lower resolution multispec-
tral images are being developed (Alparone et al., 2006). A new paradigm in the
processing of VHR imagery involves the integration of object knowledge into the
analysis process, and was recently coined GeoObject-Based Image Analysis (see
Blaschke et al., 2008).

15.5.3 MONITORING URBAN GROWTH AND PLANNING

Monitoring of urban growth and detecting informal settlements that are not regis-
tered in cadastral databases require detailed topographic mapping. For structural and
strategic planning such as building of new roads, bridges, or towns, large-scale site
mapping is also essential. VHR satellite sensors and/or digital airborne stereo sensors
can provide not only the necessary 2-D mapping information, but are also capable of
producing automated surface models (Ehlers, 2007). EO data offer great potential for
mapping, monitoring, and predicting accelerated growth of urban areas especially in
newly industrialized and developing nations. For global assessment studies, use has
been made of medium- and high-resolution satellite data such as Landsat and SPOT
imagery (Lo, 1995; Civco et al., 2005; Hipple et al., 2006; Xian, 2007).

For structural analyses, 3-D information is vital. This can be extracted from ste-
reo images of VHR spaceborne or airborne sensors using well-established photo-
grammetric techniques. LIDAR sensors provide another source of accurate height
information that is rapidly becoming important as costs are reduced and data quality
increased (Shan and Sampath, 2007). Depending on point density and the level of
integration with auxiliary data (e.g., images, terrestrial laser scanning), 3-D applica-
tions range from box and prism modeling to accurately textured and geometrically
detailed models. New investigations focus on the quality of interferometric synthetic
aperture radar (IfSAR) for digital elevation model (DEM) extraction and reconstruc-
tion of urban buildings (Stilla et al., 2003; Zhang et al., 2004).

Detailed 3-D information is necessary not only for virtual reality modeling, 3-D
geobrowsers, and general geotainment, but also for traffic planning, noise and pol-
lution modeling, and emergency routing. Other application areas include slope and
stability monitoring in mountainous areas, visual impact assessments, and facili-
ties and infrastructure management. Figure 15.3 shows a 3-D view of a section of
the city of Osnabrueck (Ehlers et al., 2003). Newly constructed buildings (yellow
outline) block the flow of cold and fresh air (blue arrows) toward the center of the
city. The 3-D model was constructed using HR digital stereo camera data from
the HRSC sensor (see Table 15.4) for the calculation of DSM. Data from the city’s
digital cadastral database were used to extract the buildings and to create the 3-D
building models.
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FIGURE 15.3 (See color insert following page 324.) Perspective view of a section of
Osnabrueck: newly constructed buildings (yellow outline) block the flow of cold and fresh
air toward the center of the city showing the impact that such a structure would have on the
inner-city environment (exaggeration factor 5).

15.6 IMAGE FUSION

A cursory look at VHR satellite systems and digital airborne cameras reveals that
almost all sensors have different spatial resolutions for their panchromatic and mul-
tispectral recording modes. The highest spatial information is only provided in the
panchromatic mode, whereas multispectral images are of lower spatial resolution.
The ratios between high-resolution panchromatic and lower-resolution multispectral
images vary between 1:2 and 1:5 (Ehlers, 2004a). This ratio may increase if data
from different sensors are used. For example, the resolution ratio between Ikonos
panchromatic and SPOT 5 multispectral imagery is 1:10, and for SPOT 4 it is 1:20.
Some sensors (e.g., EROS B or WorldView-1) provide only panchromatic imagery.
To produce HR multispectral datasets required for many urban remote applications,
the panchromatic information is merged with multispectral images.

The goals of the fusion process are many: to sharpen multispectral images, to
improve geometric corrections, to provide stereo viewing capabilities for stereopho-
togrammetry, to enhance certain features not visible in either of the single datasets
alone, to complement datasets for improved classification, to detect changes using
multitemporal data, and to replace defective data (see Pohl and van Genderen, 1998).

In general, image fusion methods can be differentiated into three levels: pixel
level (iconic), feature level (symbolic), and knowledge or decision level. Of highest
relevance to RS applications are techniques for iconic image fusion, for which many
different methods have been developed (see, e.g., Welch and Ehlers, 1987; Pohl and
van Genderen, 1998; Alparone et al., 2006). The objective of iconic image fusion is
to combine the high spatial and the multispectral information to form a fused multi-
spectral image that retains the spatial information from the HR panchromatic image
and the spectral characteristics of the lower resolution multispectral image. These
methods have been proven to work well for many applications, especially in cases
of single-sensor single-date fusion. Most methods, however, exhibit significant color
distortions for multitemporal and multisensor case studies (Ehlers, 2004b; Klonus
and Ehlers, 2007).
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Consequently, a number of improved algorithms have been developed over the
past years promising to minimize color distortion while maintaining the spatial
improvement of the standard data fusion algorithms. The wavelet theory, in particu-
lar, has led to a number of new fusion methods (Otazu et al., 2005; Lillo-Saavedra
and Gonzalo, 2006; Yunhao et al., 2006). Ehlers et al. (2008) tested the quality of a
number of advanced algorithms for multitemporal multisensor fusion. The results of
this research confirm previous findings that the standard as well as the most advanced
fusion methods implemented in commercial image processing systems cannot cope
with the demands that are placed on them by multisensor/multitemporal fusion, and
should only be used for single-sensor, single-date images. Serious color distortions
ranging from brightness reversion to a complete change of spectral characteristics
are the results of many operational and often used fusion techniques. Conversely,
wavelet-based fusion retains most of the spectral characteristics at the expense of
spatial improvement. The research concluded that of the fusion methods used in the
comparative study, only the Ehlers fusion technique recently implemented in the
ERDAS Imagine Software delivers pansharpened images with almost no spectral
changes (Ehlers et al., 2008; Figure 15.4).

A combined method for quantitative assessment of spatial improvement and spec-
tral preservation in fusion techniques is still needed to act as a quality measure for

FIGURE 15.4 QuickBird panchromatic (see Figure 15.2) and multispectral image data are
fused using the color-preserving Ehlers fusion algorithm. The fused image retains the spatial
resolution of the panchromatic image and, at the same time, the spectral characteristics of the
multispectral bands. (Image from DigitalGlobe®. Used with permission.)

© 2009 by Taylor & Francis Group, LLC


http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420083408-c15&iName=master.img-003.jpg&w=335&h=235

Future EO Sensors of Relevance 333

fusion results. Nevertheless, it seems possible to fuse multitemporal and multisensor
image data with sufficient spatial enhancement and spectral fidelity.

15.7 ROLE OF EO FOR THE GENERAL PUBLIC

One of the main advantages of VHR images is the impact that they have on the gen-
eral public. For example, news companies, rescue organizations, and government
agencies routinely use EO sensor information for disaster mapping and monitor-
ing. Recent examples include the tsunami event in the Indian ocean on Christmas
of 2004 (http://www.crisp.nus.edu.sg/tsunami/tsunami.html, accessed on June 4,
2008), the landfall of hurricane Katrina at New Orleans in August 2005 (http://
www.nasa.gov/vision/earth/lookingatearth/h2005_katrina.html, accessed on June
4,2008), or the May 2008 disasters, the Myanmar flooding (http://earthobservatory.
nasa.gov/Newsroom/NewImages/images.php3?img_id=18019, accessed on June 4,
2008), and the Earthquake in China (http:/www.universetoday.com/2008/05/16/
satellite-images-of-china-earthquake/, accessed on June 4, 2008), where hun-
dreds of thousands lost their lives. The usefulness of RS data for these examples
is immediately evident. More important, in our opinion, is the use of RS by any
citizen who has access to the Internet. Not only can Internet-based geobrowsers be
used by anyone to locate his or her house and explore the neighborhood or foreign
regions, but public awareness is frequently created by nongovernmental organi-
zations (NGOs) and grassroot communities through the use of visual evidence
provided by HR sensors.

This point will be illustrated by a couple of examples, which should not be judged
by their political intentions, but rather by their use of EO data for their particular
purpose. This can, in principle, be set up by any individual in an open and demo-
cratic society and also contested and argued in public. What makes this strategy
unique is the convincing visual evidence that is provided by the EO sensors.

For example, the environmentalist group Appalachian Voices maintains a web-
site that uses Landsat and QuickBird imagery to show the ongoing destruction of
the Appalachian Mountains by mountaintop removal coal mining (http:/www.
ilovemountains.org, accessed on June 4, 2008). The second example is Amnesty
International’s project Eyes on Darfur. This project leverages the power of VHR
satellite imagery to provide undisputable evidence of the atrocities being commit-
ted in Darfur — enabling actions by private citizens, policy makers, and interna-
tional courts. Eyes on Darfur also breaks new ground in protecting human rights by
allowing people around the world to literally “watch over” and protect 12 intact, but
highly vulnerable, villages using commercially available satellite imagery (http://
www.eyesondarfur.org, accessed on June 4, 2008). The following QuickBird images
from their website show the Darfur village of Ishma before and after the attack by
Sudanese government forces between November 2004 and early 2005. Figure 15.5
is a subset of an image taken before 2004 showing the structures of an intact village;
Figure 15.6 was taken in 2007 after its almost complete destruction. These examples
demonstrate the power of VHR imagery to give the public the opportunity to view
“what goes on in my neighbor’s backyard and beyond.”
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FIGURE 15.5 (See color insert following page 324.) The village of Ishma (Darfur) before
destruction by government and Janjawid forces. (Image from DigitalGlobe®. Used with
permission.)
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FIGURE 15.6 (See color insert following page 324.) The village of Ishma after its destruc-
tion. (Image from DigitalGlobe®. Used with permission.)

15.8 CONCLUSIONS

The development of RS systems capable of very high and ultra high resolution
has matured over the past several years. New airborne digital camera systems
have the potential to finally end the reign of analog cameras when it comes to

© 2009 by Taylor & Francis Group, LLC


http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420083408-c15&iName=master.img-004.jpg&w=335&h=193
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420083408-c15&iName=master.img-005.jpg&w=335&h=194

Future EO Sensors of Relevance 335

image acquisition for large-scale applications, whereas spaceborne sensors offer
increasing competitive advantages for acquisition of timely, accurate, and low-
cost data. Radar, hyperspectral, and LIDAR information complement optical
VHR imagery data and provide tremendous potential for urban applications. The
3-D capability of new airborne and satellite sensors is of particular advantage for
applications such as city mapping, monitoring, and modeling. As almost all sen-
sors have the highest spatial resolution in their panchromatic mode, image fusion
for pansharpening is an essential tool for image analysis. Wider utilization of
these data sources is mainly dependent on increased awareness of its availability
and effectiveness among practitioners, cost reductions, and easier integration into
existing work procedures. Of special importance is the access of EO data for the
general public that allow NGOs, grassroot organizations, and individual citizens
to make use of EO data.

For professionals, further research to increase automation in 3-D city modeling
and land use mapping from HR and VHR images is essential. However, because
every city is unique, the development of “black box™ algorithms, implying com-
plete automation is probably neither possible nor desirable and researchers are
encouraged to work with end users to develop realistic local solutions. This entails
a degree of change in workplace methodologies, which can best be facilitated by
demonstrations of how EO technology can make peoples’ jobs more efficient and
productive.
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16.1 THE NEED FOR HIGH TEMPORAL RESOLUTION
DATA TO MAP URBAN GROWTH

Earth-observing satellites have collected remote sensing data for more than 30 years,
yet most urban mapping studies do not take full advantage of the historical record
and the temporal frequency of the observations available. That information is ever
more important as remote sensing images are increasingly being used with other
types of data such as demographics, economics, and policy to understand the link
between human activity and impacts on the landscape (Lo and Faber, 1997; Wang
and Zhang, 2001; Schneider et al., 2005; Seto and Kaufmann, 2005). Linking social
processes with spatial patterns observed in remote sensing has been the subject of
numerous studies (Homewood et al., 2001; Lambin et al., 2000; Reid et al., 2000;
Nagendra et al., 2004). Yet, it is almost without exception that the spatial patterns in
these studies are observed in only two or three periods. The underlying assumption

339
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is that the relationship between landscape dynamics and social processes can be
understood with several observations in time. Although this may hold true for rela-
tively slow land use and land cover changes, the assumption is not valid for rapidly
urbanizing landscapes.

Urban growth patterns — also called urban morphology — are complex. Despite
decades of research in geography, economics, and urban studies, urban land-use
change patterns are still not well understood nor characterized (Batty, 2008).
Although the consensus is that compact urban form is critical for sustainable develop-
ment, very little is known about how urban form evolves (Jabareen, 2006; Schneider
and Woodcock, 2008). Many different methods have been proposed to model urban
growth patterns, but what are lacking are real-world observations (Makse et al.,
1995; Landis and Zhang, 1998; Fragkias and Seto, 2007). Due to the complex nature
of urban growth patterns, using only a few observations in time will not provide
accurate or meaningful information about the ways in which urban land-use change
evolves. Rather, urban growth and associated land cover changes are complex non-
linear processes that require frequent observations through time to properly monitor
and describe their morphology.

Understanding why and how cities grow requires linking landscape dynam-
ics with socio-politico-economic processes. Urban growth patterns and the rate of
growth are driven in large part by micro- and macrofactors at different temporal and
spatial scales, including global economic activity (Beaverstock et al., 2000), local
factors (Beauregard, 1995; Marcotullio, 2001), and socioeconomic changes (Knox,
1991). To understand the linkage between the socioeconomic drivers and the growth
of cities, it is important to first understand how these cities have grown in space and
time. Studies that have gone beyond the mapping process to link spatial patterns with
socioeconomic drivers have relied on accurate urban land cover maps over a long
time series at suitable spatial and temporal resolutions. From that perspective, know-
ing the rate of change or where these changes occurred over two or three periods
may not be sufficient in making the linkages with demographic patterns and policy
shifts and will require multiple observations. Rapid urban land conversion is occur-
ring in many regions, most notably in China, India, and sub-Sahara Africa. It is not
a phenomenon limited to a single country or region.

The scarcity of urban remote sensing studies using high-frequency temporal data,
here defined by use of at least three images, can be partly explained by the limited
algorithms available for such high-frequency multitemporal mapping. This chap-
ter emphasizes the importance of high temporal resolution methods to map urban
growth. It also surveys the existing algorithms for multitemporal urban mapping and
proposes metrics to provide accuracy assessment for long times series studies.

16.2 GOALS OF MAPPING WITH HIGH TEMPORAL
RESOLUTION DATA

Mapping is an exercise undertaken to answer specific questions. Where do the land
covers of interest exist? How are they distributed geographically? What is the spatial
configuration of the landscape? The choice of a classification algorithm, the land
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cover types, as well as the validation metrics must be selected according to how
these questions are to be answered. The classified map must provide information
about land cover at temporal and spatial resolutions sufficient for the objectives.
When the mapping exercise is not an end in itself, but only a starting point to link
observed landscape patterns to their drivers or their consequences, the mapping out-
put should:

* Provide high temporal resolution land cover transitions;
e Accurately map land cover/use change patterns in space and time.

The resulting multitemporal classification should yield the area, the spatial distri-
bution, and the rate of change as well as the trajectories of the land covers (Lu et al.,
2004). In addition, the accuracy of the change map, including the area estimates and
spatial patterns of change, must be assessed.

The temporal resolution must be high enough to capture multiple land cover
changes, such as the transition from forest to agriculture to urban. Furthermore, the
rate of growth is usually not equally distributed through time, with faster growth
during some periods and slower in others. The rate of growth and spatial pattern
of growth will vary in time and often in response to exogenous stimuli such as
demographic shifts (e.g., migration) or policy changes (e.g., farm subsidies). Linking
landscape changes and social processes requires observations of the landscape at
temporal frequencies that capture spatiotemporal dynamics.

16.3 AN EXAMPLE OF HIGH TEMPORAL RESOLUTION MAPPING

To understand the drivers of the change in the landscape, it is critical to have enough
measurements through time to assess the effect of a political or economic event on
land use patterns. Consider Figure 16.1, which shows the annual change in urban land
use in the Pearl River Delta between 1988 and 1996. The annual rate of change is not
constant and varies in times; one cannot model the variation using a single straight
line. Furthermore, the more abrupt and interesting variations coincide with political
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FIGURE 16.1 Annual urban land use change in km? for the Pearl River Delta.
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events. The interesting feature is not so much the average growth between 1988
and 1996, but that the growth rate varies through time, corresponding to domestic
and international events as well as local and national conditions. In the case of the
Pearl River Delta, urban growth during the late 1980s and throughout the 1990s was
largely driven by investment, particularly overseas funds. The Tiananmen Square
incident in 1989 threatened investment flows to the region, which had significant and
visible effects on land use change. It was not until after Deng Xiao Peng’s visit to the
region in 1992 that investors regained confidence in the government’s commitment
to reforms and investment flows returned, spurring another wave of urban expansion.
Clearly, political events had important effects on the landscape evolution. Without
high temporal frequency satellite data, the link between landscape patterns and
socioeconomic-political processes would not be possible.

Considering only the two endpoints of the time series, that is, 1988 and 1996, it
would have shown that approximately 2400 km? has changed but would not have
shown the reduced rates of change after the Tiananmen Square event and the very
rapid increase after Deng’s visit in 1992. Even adding a middle point between the end-
points would still have masked the rapid increase in urban land use after Deng’s visit.
With that limited information, one would have to infer an average annual growth that
is not representative of and would not have been as useful in identifying the political
factor in urban growth. Only by classifying images at enough time steps can one gen-
erate the temporal resolution needed to understand the complex relationship between
political and economic factors and the change in the urban landscape.

Similarly, there is evidence that, in some regions among all land cover types,
high-quality agricultural lands are first converted into urban uses. To make policies
to address these transitions, the planning agency must first know what the drivers
of these losses were. The rate and the geographical location of these conversions
must then be correlated with local or global policies. Sound policy grounded on a
solid understanding of the growth drivers may have significant impact on sustainable
development and food security.

Many of the current challenges in managing and understanding rapid anthropo-
genic landscape changes have such high temporal resolution requirements. Whenever
it becomes necessary to understand these drivers of changes, the details provided by
a time series of classified images are essential in correlating potential drivers to the
landscape evolution. The trajectories of the urban landscape, defined over a long
time series, are then linked to economic and immigration policy, investment, demog-
raphy, infrastructure planning, and environmental regulation. This linkage between
drivers and landscapes is a critical component in assessing existing planning policies
and in developing better ones.

The temporal resolution has also been shown to be important in other fields such
as vegetation monitoring (Lunetta et al., 2004). The built environment, especially in
developing countries, often shows higher and more variable rate of change compared
to the vegetation ecosystem, and requires higher temporal resolution. The change
detection algorithms developed for monitoring vegetation may not be well suited for
the longer time series required for mapping changes in urban areas.

Another need for long time series with good pattern accuracy is in training urban
forecasting algorithm; see Clarke et al. (1997) and Fragkias and Seto (2007) for
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examples of such algorithms. These algorithms are increasingly used in projecting
current urbanization trends into the future. In general, these forecasting algorithms
capture the growth of a city by learning how the city had grown based on satellite
sensor images. It is thus important that growth patterns be correctly mapped both in
space and time to provide a reliable basis for forecasting.

16.4 CURRENT METHODS FOR HIGH TEMPORAL
RESOLUTION DATA ANALYSIS

The remote sensing literature is rich with change detection methods (Singh, 1989; Lu
et al. 2004). These techniques include image regression, image subtraction, postclas-
sification comparison, multidate principal components analysis, multidate tasseled
cap transformation, change vector analysis, and neural networks (Fung, 1990;
Lambin and Strahler, 1994; Collins and Woodcock, 1994; Gopal and Woodcock,
1996; Dai and Khorram, 1999). Numerous methods have been developed because
of the variation in the types of study areas, the types of land cover changes being
mapped, and the temporal and spatial resolution of the data. In turn, the variation in
applications, study areas, and data constraints means that there is no such thing as a
“best” technique.

Most change detection studies evaluate change between two periods (Howarth
and Boasson, 1983; Green et al., 1994; Kwarteng and Chavez, 1998; Mas, 1999).
Although studies that use more than two dates of imagery exist (Jensen et al., 1995;
Pax Lenney et al., 1996; Collins and Woodcock, 1996), most do not use consecutive
dates, nor do they extract annual estimates of land use or land cover. Furthermore,
analyses that use more than two images are largely limited to AVHRR data (Eastman
and Fulk, 1993; Barbosa et al., 1999; Lambin, 1996). Few methods have been devel-
oped or adapted for high temporal resolution data. A survey of the literature reveals
that there are fewer than one dozen studies where the algorithm was developed for
the purpose of high temporal frequency mapping (Kaufmann and Seto, 2001; Pan
and Zhao, 2007; Xu et al., 2007).

The success of pixelwise change detection method is, first of all, a function of
the quality of the registration (Townshend et al., 1992; Dai and Khorram, 1998).
Coregistration of very long time series is difficult and can be an impediment to even
the best multitemporal method. One cannot expect high accuracy of the results if the
geographical location of pixels across the images is not reliable.

16.4.1 PosTPROCESSING OF CLASSIFIED IMAGES

The simplest change detection method classifies each image independently; changes
are then identified by comparing the classified images. This is by far the least com-
plex and most widely used change detection method. Although each map taken indi-
vidually may be accurate, there is no guarantee that the time series will be well
classified. The problem lies in the compounding of the errors across time. The time
series accuracy is approximately the product of accuracy associated with each indi-
vidually classified map (Singh, 1989). For example, a series of seven classified maps,
each with an overall accuracy of 80%, may have a time series accuracy of 0.87, or
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20% under the assumption of uncorrelated classification errors across time or space.
Thus, a good single time classification on each map is no guarantee of an accurate
time series.

16.4.2 CLASSIFICATION OF TRAJECTORIES

A second change detection method consists of analyzing the stacked images concur-
rently and classifying the class trajectories (Singh, 1989). For example, instead of
classifying a pixel as urban or agriculture, all the possible transitions between those
classes (urban to urban, urban to agriculture, agriculture to urban, and agriculture
to agriculture) are considered. The drawback of this method is that all pixel trajec-
tories in time must be exhaustively stated before the classification. Furthermore, it
requires having training data representing all these transitions. This technique is
efficient and generates good accuracy when the time series is relatively short and
contains few possible transitions. However, a long time series or the inclusion of
just a few additional land cover classes can generate far too many possibilities to
be manageable.

16.4.3 EcoNoMETRICS TIME SERIES

A third method models every pixel as a time series, where the time of change is
estimated. For example, Kaufmann and Seto (2001) use time series econometrics to
detect dates of change with better results than when the changes are obtained from
postprocessing independently classified images. The method is efficient in finding
the date of change on long time series but does not address which land cover types
were involved in the changes.

16.4.4 THe CASCADE APPROACH

The cascade approach features a good balance between ease of use and performance
in classifying long time series (Swain, 1978). It consists of sequentially classifying
the land cover classes, usually in a chronological order. Past classifications are used
to condition future classifications. The link between land cover at different times
is parameterized with transition probabilities. The main drawback of doing the
classification chronologically is that the accuracy will decrease as the time series
increases. Moreover, if the first pixel is not well classified, the remaining portion
of the time series, being conditioned to that misclassified pixel, is also likely to be
misclassified.

Instead of a classical chronological classification, one can start by classifying
the image that contains the most information relative to other images in the series.
By first identifying this image, rather than the first image in the series, these high
confidence classifications can be used to better classify the data in other periods
where classification is more uncertain (Boucher et al., 2006). The image with the best
information can be found with some information content metrics such as entropy.
Thus, adding images with high information content to a time series can increase the
mapping accuracy by constraining the images carrying less information.
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The integration of satellite sensor data at different times is done with transition
probabilities. The transition probability between land cover A and land cover B is
the probability that a pixel will change from A to B within a defined period. The
probability that no change occurred is the transition probability between land cover
A and A or B and B. If there are L land cover types, then there are L? transition prob-
abilities. It is misleading to assume that the transition probabilities are extra infor-
mation that is not needed with the previous techniques; in fact, it can be shown that
postprocessing independently classified images is equivalent of setting the transition
probability from A to B to the global proportion of B. Not explicitly choosing a set of
transition probabilities is simply equivalent to choosing an implicit, and likely incor-
rect, set of transition probabilities. Bruzzone and Serpico (1997) provide a technique
for estimating these transition probabilities.

The cascade approach is the most scalable method for long time series. The
algorithm complexity increases approximately linearly with the length of the time
series. Furthermore, it does not require radiometric corrections or that the ground
truth be colocated as required by the trajectory methods. It does, however, require the
additional effort of obtaining the transition probability for any land cover to change
into any other land cover in one time step. Ideally, each remote sensing image should
have been taken at regular intervals, say every year in December. The transition
probability matrix must be adjusted if the images are distributed irregularly in time.

A more rigorous approach would be to jointly classify all the dates through an
iterative method such as expectation-maximization; such an iterative approach would
be prohibitively and computationally costly for long time series and large images.

16.4.5 Issues oF SpATIAL RESOLUTION

The techniques discussed above assumed that the images have the same spatial res-
olution. This may not always be the case. For example, combining Landsat MSS
with Landsat Thematic Mapper imagery has the additional challenges of integrat-
ing images with different radiometric and spatial resolution. Newer sensors provide
spatial resolution that is finer than existing sensors. Combining images from sensors
with different spatial resolution pose additional challenges that will be increasingly
relevant if we wish to take advantage of the available information. At this point, one
can either adjust the spatial scale of the images by upscaling or downscaling so that
they will share the same spatial resolution.

16.5 ACCURACY ASSESSMENT OF HIGH
TEMPORAL RESOLUTION TIME SERIES

A classified map is only useful if associated with an accuracy assessment. Moreover,
that accuracy assessment must target the mapping objectives. Most change detection
studies address issues of accuracy, but few address the issue of accuracy through time.
In addition to cross-sectional accuracy, such as the confusion matrix and the kappa
coefficient, the classification of land covers over time must also be accurate. The tempo-
ral component becomes as important as the spatial component when it is necessary to
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know both when and where changes have occurred. Classifying a time series of remote
sensing images differs from classifying each image independently. Independently
classifying each image provides an accurate mapping of the urban area at each time,
that is, cross-sectional accuracy. It may provide reasonable estimates of the rates of
overall growth between two periods. It will not, however, provide an accurate temporal
pattern of growth, that is, where, when, and how the changes occurred. The reader is
referred to Biging et al. (1999) for a perspective on accuracy for change detection.

Ideally, a time series of georeferenced ground truth data would exist for each pixel
in the training data set. Having enough of these fully known time series greatly eases
the validation of the temporal mapping. Take the example of mapping five land cov-
ers (e.g., water, vegetation, agriculture, urban, and transition) over 8 years, from 1988
to 1996, in the Pearl River Delta, China. Figure 16.2 shows the accuracy of the time
series as a function of its length; the accuracy assessment is performed on more than
2000 known time series with a fivefold cross-validation. The solid and the dashed
lines are obtained with the cascade approach, whereas the gray line is obtained by
classifying each image independently. Two measures of accuracy are displayed; the
first one is the accuracy in mapping change. In this case, a time series is considered
to be well classified if the dates of change have been correctly identified. The land
covers involved in the change are not considered at this point. A second accuracy
metric, also shown in Figure 16.2 (right), considers a time series well classified only
if all the land cover types have been correctly identified for all points in time. This
measures the type of land cover change — change from what to what land cover
classes — as well as when the change occurred. This is a more stringent accuracy
metric, but it is also more relevant when linking changes in land covers with socio-
economic policies.

As the length of the time series increases, the accuracy generally decreases. The
rate of decrease is higher when the images are independently classified (shown by
the gray line) than when the cascade approach is used (shown by the solid and dashed
lines). For the cascade approach, accuracy is also a function of the sequencing. For
instance, classifying the most informed pixels first (solid line) delivers a higher
accuracy than doing a chronological classification (dashed line). Using temporal
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© 2009 by Taylor & Francis Group, LLC



Methods and Challenges for Using High-Temporal Resolution Data 347

information — in this case, transition probabilities — increases the accuracy of a
long time series.

For a given length of a time series, a useful accuracy indicator is the percentage of time
series containing at least n consecutive pixels that are correctly classified. Consider the
examples in Figure 16.2 with a time series length of seven. The first point in Figure 16.3
shows the percentage of time series that have at least two consecutive times, out of
the seven, that are well classified. That same accuracy is computed for a consecutive
sequence of three, four, up to seven, which yields the same values as in Figure 16.2.

In the most difficult case, where the ground truth data are not georeferenced
through time, the validation of the time series becomes more difficult because there
are no data to compare the classification over time. In that case, one cannot obtain
a precise accuracy number. The issue of how to assess time series accuracy for long
time series and high temporal frequency data will require significant research, espe-
cially as the satellite record continues to lengthen. New metrics, albeit imperfect,
will be required that describes time series accuracy. One alternative is to search
and count how many impossible or very unlikely transitions, based from expert
knowledge, have been mapped (Liu and Zhou, 2004). For example, if it is impossible
for an urban land cover to change into a forest within 2 years, one can then scan the
classified maps searching for such a transition. If some are found, it is indicative
of some of the errors contained in the map. Tabulating such impossible transitions
would give the user a broad idea about its accuracy in mapping change patterns.

16.6 CONCLUSION

As the physical size and number of cities continue to grow, their impacts on the
environment will also increase. The questions and challenges generated by these
fast-growing cities required high-temporal resolution time series, and algorithms can

Percentage of Time Series with Well-classified Consecutive Pixels
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FIGURE 16.3 Percentage of time series with at least n consecutive years that are
well-classified. The number of consecutive dates 7 is set to vary between 2 and 7.
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efficiently process these images. Learning what influenced the growth patterns and
linking urban growth with sociopolitical or economic events is essential in develop-
ing policies that will lead to more sustainable built places.

New methods for classifying and assessing these long time series are needed to
reduce the time and effort required in generating these high-temporal resolution
images. Most of the development about multitemporal mapping focuses on classi-
fying only two or three images when, in fact, many more are needed to link urban
growth with social and economics policies.
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COLOR FIGURE 3.5 Settlements north of Nairobi, Kenya. Three examples of landscape
representations: (a) land cover map produced in the Africover project based on Landsat 5
imagery; (b) built-up index map based on SPOT 5 imagery.
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COLOR FIGURE 3.5 (Continued) (c) 1: 50.000 scale topographic map.
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COLOR FIGURE 4.2 Anthropogenic materials in spectral mixing space. Scatterplots of
the four primary principal components (P.C.s) of the laboratory spectra in Figure 4.1 show the
geometric relationship of the anthropogenic spectra (in color) to vegetation and rock and soil
substrates (gray). The latter non-anthropogenic spectra form a sub-planar, triangular distribu-
tion resulting from mixtures of bright substrates (e.g., sand) and dense vegetation (e.g., grass)
with varying amounts of darker, more absorptive material (e.g., Fe-Mg minerals) or shadow.
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COLOR FIGURE 4.5 Hyperspectral urban diversity in New York City and California.
AVIRIS hyperspectral cube shows the diversity and scale of urban reflectance in the densely
built-up environment of upper Manhattan and in both Goleta and its undeveloped periphery.
The “red edge” at 0.7 mm illustrates the abundance of fine scale vegetation in the urban
mosaic. Mixing space topology has a skewed pyramid structure with the dark endmember at
the apex and prominent mixing lines associated with asphalt and vegetation.
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COLOR FIGURE 4.5 (Continued)
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COLOR FIGURE 4.6 Inter-urban comparison of 28 cities as seen by Landsat 7. Each 30
% 30 km subscene has been calibrated to exoatmospheric reflectance and enhanced with the
same 1% linear stretch so colors are comparable. Full resolution color images available at

http://www.LDEO.columbia.edu/~small/Urban
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COLOR FIGURE 4.7 Comparison of Landsat ETM+ global composite mixing spaces
for urban and non-urban environments for 30 cities, and for mixing spaces with 9x9 km
cores of each of the 30 cities in the composite. Aside from spurs associated with reefs, ice and
snow in the global composite, the topology of the mixing spaces is strikingly similar. The
non-urban space has three distinct internal clusters (not including water) along vegetation and
substrate mixing lines but the urban space has only one cluster for built-up cores. Note that
even the most densely built-up cores together span almost the entire mixing space.
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COLOR FIGURE 4.7 (Continued)
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(a) Landsat 30 m Classification (b) MODIS 463 m Classification

(c) MODIS 1 km Classification (d) MODIS 463 m Urban Intensity
(e) Nighttime Lights 1 km Data (f) Impervious Surface Area 1 km Data
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COLOR FIGURE 5.2 A comparison of maps for the Washington D.C.—Baltimore, Maryland
conurbation depicting (a) a Landsat-based classification (30 m), (b) the MODIS-based clas-
sification (463 m resolution), (c) the prior version of the MODIS-based map (1 km resolu-
tion), (d) sub-pixel “urban intensity” from 463 m MODIS data, (e) nighttime lights data, and
(f) NOAA’s impervious surface area map.
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COLOR FIGURE 6.5 Map of poverty levels for 2,543 sub-national administrative units
estimated based on the satellite data—derived poverty index.
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COLOR FIGURE 8.1 Urban extents and rural settlements in the Nile Delta (FAO-PMUR),
2000.
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COLOR FIGURE 8.2 Overlay of built-up area from Africover on urban extents from
PMUR in the Nile Delta, 2000.
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COLOR FIGURE 8.4 Transformation around the Nile Delta lagoon, changes from 1972 to
2000.
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COLOR FIGURE 8.5 Land reclamation in the Nile Delta, changes from 1972 to 2000.
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COLOR FIGURE 8.6 Land cover change in the Nile Delta from 1972 to 2000, Africover
aggregations.
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COLOR FIGURE 8.8 Land cover change in the Egyptian city of El Mahala El Kobra from
1984 to 2002, Africover aggregations.
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Slope Analysis—Rio de Janerio
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COLOR FIGURE 10.2 Overlapping of the DEM and Landsat data indicating areas of high
landslide risk based on steepness of slopes in the megacity Rio de Janeiro, Brazil.
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COLOR FIGURE 10.3 Change detection and urbanization rates in the megacity Mumbai,
India.
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House Street Shadow Bushes
0 250 500 m

COLOR FIGURE 10.5 Land cover classification of the dense urban structures of Mexico
City, Mexico, based on Quickbird data.

(a) Built-up Density (b) Distances (c) Structural Vulnerability
N
Built-up Density Thematic Class Distances Probable Building Damage Grades
High density Inner-city highway 0-100 m 0,48 0,28 026
Medium density Open spaces 100-500 m 0,20 0,17 0,06
Low density >500 m
Open space

COLOR FIGURE 10.6 Indicators contributing to a holistic concept of risk and vulnerability.
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COLOR FIGURE 10.7 Nighttime population estimation.
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BANGLADESH-DHAKA City and Outskirts 1:50.000

COLOR FIGURE 10.9 Flooding of the megacity Dhaka, Bangladesh. Rapid mapping
product produced at DLR-ZKI to derive up-to-date spatial information for relief operations.
(Image from the Center for Satellite-Based Crisis Information. With permission.)
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COLOR FIGURE 10.10 Mapping damage from an earthquake in an urban environment
using interferometric coherence.

© 2009 by Taylor & Francis Group, LLC



Cities Participating in the Urban
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Collection 2006/2007

Urban audit cities

Large city audit cities

COLOR FIGURE 11.1 Cities participating in the Urban Audit, 2006-2007. (Courtesy of
Urban Audit.)
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COLOR FIGURE 11.3 Satellite image and derived land use map from city of Erfurt,
Germany. (Courtesy of GUS, H.G. Geo Data Solutions.)
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COLOR FIGURE 11.4 Badajoz, Spain, example of Urban Atlas classification. (Courtesy

of GSE Land.)
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10

COLOR FIGURE 11.5  Badajoz divergence image — from red for no agreement to green for
total agreement among the 10 service providers. (Courtesy of ETC-Lusi.)

COLOR FIGURE 11.6  Urban green map for the city of Poperinge, Belgium. (Courtesy of
GUS - Eurosense.)
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COLOR FIGURE 11.9 Pixel-based soil sealing map of Munich, Germany. (Courtesy of
GSE Land — H.G. Geodata Solutions.)
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COLOR FIGURE 11.10  Object-based soil sealing map of Munich, Germany. (Courtesy of
GSE Land - H.G. Geodata Solutions.)
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COLOR FIGURE 13.4 The frequency of urban patch sizes (log-log scale) for each map
(excluding IMPSA). Observations are indicated with hollow circles and the solid line is a fit-
ted spline. HYDES3 is plotted starting at 10 km? because of the coarse resolution of HYDE3
pixels (5* arc-minutes). (From Potere, D. and Schneider, A. GeoJournal, 69: 55-80, 2007.
With permission.)
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COLOR FIGURE 13.5 The distribution of urban land per continental region for eight global
urban maps. The thickness of the horizontal bars reflects the relative amount of urban land
within each of the eight maps. These horizontal bars are divided into sections representing the
relative distribution of urban land area within each of the ten regions. (From Potere, D. and
Schneider, A. GeoJournal, 69: 55-80, 2007. With permission.)
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COLOR FIGURE 13.6 Five levels of a discrete global grid (DGG) system with hexagonal
facets for the globe (upper left) and over the United Kingdom (lower right). The DGG dis-
played for the globe is at the coarsest facet size of 70,000 km? (purple facets in the lower
right). The map legend also shows the effective spatial resolution for each facet size, esti-
mated by the square root of the facet area. (From Potere, D. and Schneider, A. GeoJournal,
69: 55-80, 2007. With permission.)
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COLOR FIGURE 13.7 Depiction of the percentage of urban land per facet for all eight
global urban maps, aggregated to a discrete global grid with hexagonal facets 2,591 km? in
area (effective resolution of 51 km); (i) shows the amount of urban area for each grid cell aver-
aged across all eight maps. Dark blue indicates absence of urban land. (From Potere, D. and
Schneider, A. GeoJournal, 69: 55-80, 2007. With permission.)
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COLOR FIGURE 13.7 (Continued)
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COLOR FIGURE 13.11 A global sample of 120 cities with populations greater than 100,000
from Angel et al. (2005) and 30 world cities from Schneider and Woodcock (2008). The
Schneider and Woodcock cities are blue boxes, all of which are covered by high-resolution
imagery from the Google Earth (GE) archive. The circles represent Angel et al. cities, and the
color indicates the resolution of GE imagery available for that city as of March 2008, where
“high” is QuickBird, Spot 5, or aerial photography, and “medium” is Landsat GeoCover.
(From Potere, D. and Schneider, A. GeoJournal, 69: 55-80, 2007. With permission.)

COLOR FIGURE 15.3 Perspective view of a section of Osnabrueck: newly constructed
buildings (yellow outline) block the flow of cold and fresh air toward the center of the city
showing the impact that such a structure would have on the inner-city environment (exag-
geration factor 5).
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COLOR FIGURE 15.5 The village of Ishma (Darfur) before destruction by government and
Janjawid forces. (Image from DigitalGlobe®. Used with permission.)
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COLORFIGURE 15.6 The village of Ishma after its destruction. (Image from DigitalGlobe®.
Used with permission.)
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